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Problem
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Formal methods 
for secure software architectures

Enforce rigor
Enable reasoning
Provide assurance

→ interesting for SA
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Formal methods 
not widely used.

High overhead
Require expertise
Different stakeholders
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Solution
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Refined models
of building blocks (e.g., security patterns)

Created and used by security engineer
→ Assess security

Results in better documentation
Verification results are reusable

Contribution – part I 
for the security engineer
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Abstract models
of building blocks (e.g., security patterns)

Simple, behaves like refinement
Created by security engineer
Used by software architect

→ Uncover compositional issues
(Re-)usable!

Contribution – part II 
for the software architect
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Outline
Background
Contribution I
Contribution II
Wrap-up
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Background 
modelling software architectures

sig Message {}

sig Logger in Component {
contents: Message set → Time

}

sig Log in Operation {}

sig Logger.log(m:Message,t:Time) {
m in this.contents.t

}

sig Client in Component {}

...

ClientAlloy Logger

Component Interface

OperationInvocation of

caller receivers contains
realizes

Meta model

Architecture
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Modelling a pattern 
language for accountability
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Contents
Secure Logger, Audit Interceptor, 
Authentic. and Authoriz. Enforcer, 
Secure Pipe

Motivation
Self-contained set
Useful in practice (industrial projects)

A pattern language 
for accountability

Christopher Steel, Ramesh Nagappan, and Ray Lai. 
Core Security Patterns: Best Practices and Strategies for J2EE, Web Services, and Identity Management. 
Prentice Hall, 2005.
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Prentice Hall, 2005.

Modelling 
the Secure Logger pattern
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Modelling 
the Secure Logger pattern

sig SignedMessage {
        content: ProcessedMessage one -> Time,
        signedContent: ProcessedMessage one -> Time,
        signedBy: Principal one -> Time
}

sig Logger in Component {
        contains: set SignedMessage -> Time,
        nextUID: Int one -> Time
}{
        all t:Time,c:Component,m:Message,i:Int {
                Execute[c,this,Log,m,t] => some t1:Time | this.log[m,t,t1]
                Execute[c,this,Read,m+i,t] => this.read[m,i,t]
                Execute[c,this,Verify,i,t] => this.verify[i,t]
        }
}

pred Logger.log(m:Message, t:Time) {
        some pm:ProcessedMessage, s:SignedMessage { 
                pm.content.t = m
                0 <= pm.id.t
                pm.id.t < calculateNextUID[this,t]
                s.content.t = pm
                s.sign[LoggerEntity,t]
                s in this.contains.t
        }
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assert NothingDeleted {
 all t:Time,m:Message,l:Logger,c:Component | 
  Invoke[c,l,Log,m,t] implies (
   some t1:t.nexts+t {

“Whenever a message is logged, 
it can be read back later 

or the verify method returns false.”

Verification 
encoding sec. requirements
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“assume that invocations are 
eventually executed”

Automatically
generated

Manually
interpreted

Verification
analyzing counterexamples
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Trust assumptions!
Usually left implicit
Assurance requires explicit assumptions

Modelling and verification.
Makes them explicit
Finds extra assumptions

Contribution 1 
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Uncovered assumptions
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Composing abstract models
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Abstraction

vs.

Refinement
pred Logger.log(m:Message, t:Time) {
   some pm:ProcessedMessage, s:SignedMessage { 
      pm.content.t = m
      0 <= pm.id.t and pm.id.t < calculateNextUID[this,t]
      s.content.t = pm and s.sign[LoggerEntity,t]
      s in this.contains.t
   }
}

pred Logger.log(m:Message,t:Time) {
        some c:Component,t1:t.prevs+t | Execute[c,this,Log,m,t1]
}

Contribution 2
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Two subjects
senior researchers

Extend basic architecture

Case study 

Provided
in Alloy

Task 1 Task 2
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Both candidates successful
1St 1 hour, 2nd 2 ½ hour
+ exit questionnaire = useful

Results
both solutions correct 

(in line with reference solution)
±7 assumptions each
1 flaw in solution, results in assumption

Case study 
results
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Modelled pattern language 
for accountability

Verify Once, Reuse Many

Provides insight in patterns

Summary 
what to take home.
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Larger research track
Formal methods in 
secure software architecture

Under review: formal framework

In progress: DSL + tool support

Big picture 
this research in context
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http://distrinet.cs.kuleuven.be/software/samodels/
thomas.heyman@cs.kuleuven.be
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