
Reusable formal models for
secure software architectures

Thomas Heyman, Riccardo Scandariato, Wouter Joosen

IBBT-DistriNet, KU Leuven

2

Problem

3

Formal methods
for secure software architectures

Enforce rigor
Enable reasoning
Provide assurance

→ interesting for SA

4

Formal methods
not widely used.

High overhead
Require expertise
Different stakeholders

5

Solution

6

Refined models
of building blocks (e.g., security patterns)

Created and used by security engineer
→ Assess security

Results in better documentation
Verification results are reusable

Contribution – part I
for the security engineer

7

Abstract models
of building blocks (e.g., security patterns)

Simple, behaves like refinement
Created by security engineer
Used by software architect

→ Uncover compositional issues
(Re-)usable!

Contribution – part II
for the software architect

8

Outline
Background
Contribution I
Contribution II
Wrap-up

9
Thomas Heyman, Riccardo Scandariato, and Wouter Joosen.
Security in context: analysis and refinement of software architectures.
In Annual IEEE Computer Software and Applications Conference, July 2010.

Background
modelling software architectures

sig Message {}

sig Logger in Component {
contents: Message set → Time

}

sig Log in Operation {}

sig Logger.log(m:Message,t:Time) {
m in this.contents.t

}

sig Client in Component {}

...

ClientAlloy Logger

Component Interface

OperationInvocation of

caller receivers contains
realizes

Meta model

Architecture

10

Modelling a pattern
language for accountability

11

Contents
Secure Logger, Audit Interceptor,
Authentic. and Authoriz. Enforcer,
Secure Pipe

Motivation
Self-contained set
Useful in practice (industrial projects)

A pattern language
for accountability

Christopher Steel, Ramesh Nagappan, and Ray Lai.
Core Security Patterns: Best Practices and Strategies for J2EE, Web Services, and Identity Management.
Prentice Hall, 2005.

12
Christopher Steel, Ramesh Nagappan, and Ray Lai.
Core Security Patterns: Best Practices and Strategies for J2EE, Web Services, and Identity Management.
Prentice Hall, 2005.

Modelling
the Secure Logger pattern

13

Modelling
the Secure Logger pattern

sig SignedMessage {
 content: ProcessedMessage one -> Time,
 signedContent: ProcessedMessage one -> Time,
 signedBy: Principal one -> Time
}

sig Logger in Component {
 contains: set SignedMessage -> Time,
 nextUID: Int one -> Time
}{
 all t:Time,c:Component,m:Message,i:Int {
 Execute[c,this,Log,m,t] => some t1:Time | this.log[m,t,t1]
 Execute[c,this,Read,m+i,t] => this.read[m,i,t]
 Execute[c,this,Verify,i,t] => this.verify[i,t]
 }
}

pred Logger.log(m:Message, t:Time) {
 some pm:ProcessedMessage, s:SignedMessage {
 pm.content.t = m
 0 <= pm.id.t
 pm.id.t < calculateNextUID[this,t]
 s.content.t = pm
 s.sign[LoggerEntity,t]
 s in this.contains.t
 }

14

assert NothingDeleted {
 all t:Time,m:Message,l:Logger,c:Component |
 Invoke[c,l,Log,m,t] implies (
 some t1:t.nexts+t {

“Whenever a message is logged,
it can be read back later

or the verify method returns false.”

Verification
encoding sec. requirements

15

“assume that invocations are
eventually executed”

Automatically
generated

Manually
interpreted

Verification
analyzing counterexamples

16

Trust assumptions!
Usually left implicit
Assurance requires explicit assumptions

Modelling and verification.
Makes them explicit
Finds extra assumptions

Contribution 1

17

Uncovered assumptions

18

Composing abstract models

19

Abstraction

vs.

Refinement
pred Logger.log(m:Message, t:Time) {
 some pm:ProcessedMessage, s:SignedMessage {
 pm.content.t = m
 0 <= pm.id.t and pm.id.t < calculateNextUID[this,t]
 s.content.t = pm and s.sign[LoggerEntity,t]
 s in this.contains.t
 }
}

pred Logger.log(m:Message,t:Time) {
 some c:Component,t1:t.prevs+t | Execute[c,this,Log,m,t1]
}

Contribution 2

20

Two subjects
senior researchers

Extend basic architecture

Case study

Provided
in Alloy

Task 1 Task 2

21

Both candidates successful
1St 1 hour, 2nd 2 ½ hour
+ exit questionnaire = useful

Results
both solutions correct

(in line with reference solution)
±7 assumptions each
1 flaw in solution, results in assumption

Case study
results

22

Modelled pattern language
for accountability

Verify Once, Reuse Many

Provides insight in patterns

Summary
what to take home.

23

Larger research track
Formal methods in
secure software architecture

Under review: formal framework

In progress: DSL + tool support

Big picture
this research in context

24

http://distrinet.cs.kuleuven.be/software/samodels/
thomas.heyman@cs.kuleuven.be

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

