NAPA target architecture

Where we want to go and how it’s
proceeding




Layering as it has been done in the
latest two decades or so

Event loop

A\

Keyboard

GUI Framework

N

Screen

Request services,
ask model
parameters

Application Logic (Model, Calculation)
As services

Application logic independent / oblivious of the UI.



The target architecture

Iron Ruby callback / W!DF XAML
>| Widget

eventhandlers -

Y

Napa C# GUI- Y
T Napa Ruby GUI-framework

N

v
NAPA Object Model (C#)

Napa Fortran Core

V

3 © Napa Group 2012



Language choices

* Not everything is best done in Fortran ;)

* Have to leverage the legacy but take
advantage of newer languages
e Higher productivity
e Something fairly mainstream
» Developers
e Support
e Libraries
» Minimize the role of Napa Basic

» Productivity, libraries, support, documentation

4 © Napa Group 2012



Language choices

e First Java was selected but some years
later abandoned for C#. This has left us
with Java legacy we want to get rid of.

e Iron Ruby as the GUI callback language

e Simpler than C# to learn and use for casual
developers

o Easier transformation of present callback
codebase

o XAML for declarative definition of GUI

5 © Napa Group 2012



R T AL L R
NAPA Object Model

o Abstract present functionality with class wrappers
to allow OO based access to the functionality

e Also for implementing new functionality
e OO based systems are not without their share of

problems. We'd love to have those problems
instead of the ones we have now.

6 © Napa Group 2012



R T AL L R
Language interoperability

o Custom(ized) code generators enable easy access
between Fortran, C and C# (from any to any)

enabling selecting the right language for the job
at hand

e Iron Ruby code can easily call C# (and vice versa)

e Proof of concept implementation of

handling Fortran objects from C# / Iron
Ruby

* To enable effortless integration between UI
and core

7 © Napa Group 2012



How to (slowly) reach the target state

o Refactoring

e The boy scout rule

e Leave the camping ground cleaner than it was
when you got there

e Introducing named constants
e Routine mass renaming
e Cleaning up control flow (remove GOTOs)

o Extract routines to make the huge routines
smaller

8 © Napa Group 2012



How to (slowly) reach the target state

o Architectural refactoring

e Currently removing the layering violations, i.e.
business logic does not ask for more input

o Unit tests
e In Fortran and Ruby
e Coverage still low but steadily growing

e Often hard to write tests for a small piece of
code
e Global state
e Huge (multi-responsibility) routines
e High coupling



How to (slowly) reach the target state

» Replace custom solutions with off the shelf
ones when feasible

» E.g. we recently replaced custom memory
allocation implemented in Fortran 77 with the
one provided by C runtime (POSIX)

10 © Napa Group 2012



How to (slowly) reach the target state

e Technology workshops / internal training
o Communication essential

e Spread knowledge of architectural
conventions, best practices etc.




Difficulties with the wetware

o Resistance / nonwillingness to use
approaches like
o Structured types

* Named constants
e E.g. 3 VS STRING_RECORD

e Descriptive names
e E.g. CH17 VS CH UPCASE

e Resistance to refactoring
o "If it's not broken, don't fix it”

12 © Napa Group 2012



