NAPA target architecture

Where we want to go and how it’s
proceeding
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The target architecture
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Language choices

* Not everything is best done in Fortran ;)

* Have to leverage the legacy but take
advantage of newer languages
e Higher productivity
e Something fairly mainstream
» Developers
e Support
e Libraries
» Minimize the role of Napa Basic

» Productivity, libraries, support, documentation
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Language choices

e First Java was selected but some years
later abandoned for C#. This has left us
with Java legacy we want to get rid of.

e Iron Ruby as the GUI callback language

e Simpler than C# to learn and use for casual
developers

o Easier transformation of present callback
codebase

o XAML for declarative definition of GUI
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R T AL L R
NAPA Object Model

o Abstract present functionality with class wrappers
to allow OO based access to the functionality

e Also for implementing new functionality
e OO based systems are not without their share of

problems. We'd love to have those problems
instead of the ones we have now.
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R T AL L R
Language interoperability

o Custom(ized) code generators enable easy access
between Fortran, C and C# (from any to any)

enabling selecting the right language for the job
at hand

e Iron Ruby code can easily call C# (and vice versa)

e Proof of concept implementation of

handling Fortran objects from C# / Iron
Ruby

* To enable effortless integration between UI
and core
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How to (slowly) reach the target state

o Refactoring

e The boy scout rule

e Leave the camping ground cleaner than it was
when you got there

e Introducing named constants
e Routine mass renaming
e Cleaning up control flow (remove GOTOs)

o Extract routines to make the huge routines
smaller

8 © Napa Group 2012



How to (slowly) reach the target state

o Architectural refactoring

e Currently removing the layering violations, i.e.
business logic does not ask for more input

o Unit tests
e In Fortran and Ruby
e Coverage still low but steadily growing

e Often hard to write tests for a small piece of
code
e Global state
e Huge (multi-responsibility) routines
e High coupling



How to (slowly) reach the target state

» Replace custom solutions with off the shelf
ones when feasible

» E.g. we recently replaced custom memory
allocation implemented in Fortran 77 with the
one provided by C runtime (POSIX)
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How to (slowly) reach the target state

e Technology workshops / internal training
o Communication essential

e Spread knowledge of architectural
conventions, best practices etc.




Difficulties with the wetware

o Resistance / nonwillingness to use
approaches like
o Structured types

* Named constants
e E.g. 3 VS STRING_RECORD

e Descriptive names
e E.g. CH17 VS CH UPCASE

e Resistance to refactoring
o "If it's not broken, don't fix it”
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