
Automated Analysis and Code
Generation for Domain-Specific Models

George Edwards
University of Southern California

Yuriy Brun
University of Massachusetts

Nenad Medvidovic
University of Southern California

Overview
• Background: DSLs and MDE

• Research Challenge: Building Tools for DSLs

• Our Solution Approach

• The LIGHT Platform

• Evaluation Results

Domain-Specific Languages (DSLs)

• Modeling languages that are customized for a
particular problem

• Concisely express system designs
– No missing or extraneous features
– Capture common, reusable patterns
– Enforce architectural constraints
– Use symbols native to the application domain

• Easily modified, evolved, and composed

Model Driven Engineering (MDE)
• Model-driven engineering (MDE) combines DSLs with model

interpreters
– Metamodels define elements, relationships, views, and constraints
– Model interpreters leverage domain-specific models for analysis, code

generation, and transformation

Model Driven Engineering (MDE)
• Model-driven engineering (MDE) combines DSLs with model

interpreters
– Metamodels define elements, relationships, views, and constraints
– Model interpreters leverage domain-specific models for analysis, code

generation, and transformation

Metamodeling
Environment

Metamodeling
Language

Metamodels

Model Driven Engineering (MDE)
• Model-driven engineering (MDE) combines DSLs with model

interpreters
– Metamodels define elements, relationships, views, and constraints
– Model interpreters leverage domain-specific models for analysis, code

generation, and transformation

Metamodeling
Environment

Domain-Specific
Modeling

Environment
Metamodeling

Language

Metamodels

Domain Specific
Modeling Languages

Metamodel
Interpreter

Model Driven Engineering (MDE)
• Model-driven engineering (MDE) combines DSLs with model

interpreters
– Metamodels define elements, relationships, views, and constraints
– Model interpreters leverage domain-specific models for analysis, code

generation, and transformation

Metamodeling
Environment

Domain-Specific
Modeling

Environment
Metamodeling

Language

Metamodels

Domain Specific
Modeling Languages

ModelsModelsModels

Metamodel
Interpreter

Model Driven Engineering (MDE)
• Model-driven engineering (MDE) combines DSLs with model

interpreters
– Metamodels define elements, relationships, views, and constraints
– Model interpreters leverage domain-specific models for analysis, code

generation, and transformation

Metamodeling
Environment

Domain-Specific
Modeling

Environment

Analysis and
Simulation Platforms

Run-time Platforms
Metamodeling

Language

Metamodels

Domain Specific
Modeling Languages

ModelsModelsModels

Formal ModelsFormal ModelsFormal Models

Models
ModelsDevelopment

Artifacts

Metamodel
Interpreter

Model
Interpreters

Challenge: Building Interpreters
• Today, we have to write these tools by hand

• For a DSL of modest size, tools average 18K SLOC and

approximately 4 person-months

• Developing and maintaining DSLs and interpreters is hard
– Reusing model interpreters for different DSLs is hard
– Little guidance on how to construct DSLs and interpreters
– Semantics applied to models are opaque
– Requires particular types of expertise

Simplifying Insight
Automatically synthesize domain-specific model interpreters the same
way that domain-specific model editors are synthesized

Metamodel Editor

Metamodel
Interpreter

Configurable
Model Editor

Model
Editor

Plug-ins

Model Repository

Domain-
Specific
Model

Metamodel

Presentation
Specifications

Presentation
Semantics

Types and Views

Simplifying Insight
Automatically synthesize domain-specific model interpreters the same
way that domain-specific model editors are synthesized

Metamodel Editor

Metamodel
Interpreter

Metamodel
Interpreter

Configurable
Model Editor

Model
Editor

Plug-ins

Configurable
Code Generator

Code
Generator
Plug-ins

Model Repository

Domain-
Specific
Model

Metamodel

Presentation
Specifications

Platform
Specifications

Synthesis
Interpretation

Presentation
Semantics

Platform
Semantics

Types and Views

Simplifying Insight
Automatically synthesize domain-specific model interpreters the same
way that domain-specific model editors are synthesized

Metamodel Editor

Metamodel
Interpreter

Metamodel
Interpreter

Metamodel
Interpreter

Configurable
Model Editor

Model
Editor

Plug-ins

Configurable
Code Generator

Code
Generator
Plug-ins

Configurable
Analysis Tool

Analysis
Tool

Plug-ins

Model Repository

Domain-
Specific
Model

Metamodel

Presentation
Specifications

Platform
Specifications

Analysis
Specifications

Synthesis
Interpretation

Presentation
Semantics

Platform
Semantics

Analysis
Semantics

Types and Views

Solution Approach

Metamodel Editor

Metamodel Metamodel
Interpreter A

Model Editor
Framework

Metamodel
Interpreter B

Model Interpreter
Framework

Target Platform

Presentation
Semantics

Platform Semantics

Application
Model
(Abstract

Representation) Executable
Model

Types and Views

Presentation
Properties

Platform
Properties

• Embed semantics in metamodels as properties of metatype instances
• Use a metamodel interpreter to derive transformation rules from property

values
– Transformation rules are captured in a framework extension

• Use a model interpreter framework to implement transformation logic
– Transformation logic is applied according to transformation rules

Presentation Logic

Presentation Rules

Code Generation
Logic

Code Generation
Rules

Target Display

Visualized
Model

The LIGHT Platform

• A MDE platform for software architectures
• Includes:

– Metamodeling language and metamodel editor
– Two metamodel interpreters with paired model interpreter

frameworks
– Example metamodels and framework extensions

• Provides the extensibility to accommodate new
language features and architectural analyses

Metamodeling Language

Example Metamodel Snippet

LIGHT Benefits
• Reduced implementation

effort
– Effort saved through code

generation and reuse
– Quantified by:

• Lines of generated
interpreter code

• Total lines of reused
interpreter code

• Lines of generated code per
domain-specific type

• Lines of reused code per
domain-specific type

• Reduced maintenance
effort
– Due to relative ease of

performing DSL
modifications within a
metamodel rather than
within model interpreter
source code

– Quantified by number of
metamodel objects
altered vs. number of
classes, methods, and
SLOC altered

Implementation Effort Metrics

500

1000

1500

2000

2500

3000

15 20 25 30 35 40

AADL
C2
Client/server
Ecore
Prism-MW
Myx.fw
Pipe-and-filter
Publish/subscribe
xADL Core

SLOC Generated per Domain-Specific Type

To
ta

l S
LO

C
G

en
er

at
ed

COCOMO Estimates (avg): Nominal settings 23.4 person-months
 Favorable settings 4.2 person-months

Maintenance Effort Metrics

0

5

10

15

20

25

30

Types Affected
Classes Altered
Methods Altered
Code Altered/ Type

Conclusions

• Building and maintaining DSL tools is hard
• Automatic synthesis of modeling tools reduces

the cost of using DSLs
• Tradeoffs in our approach:

– Reduced flexibility
– Additional metamodeling effort
– Analysis and code generation tools must be

chosen a priori

Questions?

	Automated Analysis and Code Generation for Domain-Specific Models
	Overview
	Domain-Specific Languages (DSLs)
	Model Driven Engineering (MDE)
	Model Driven Engineering (MDE)
	Model Driven Engineering (MDE)
	Model Driven Engineering (MDE)
	Model Driven Engineering (MDE)
	Challenge: Building Interpreters
	Simplifying Insight
	Simplifying Insight
	Simplifying Insight
	Solution Approach
	The LIGHT Platform
	Metamodeling Language
	Example Metamodel Snippet
	LIGHT Benefits
	Implementation Effort Metrics
	Maintenance Effort Metrics
	Conclusions
	Questions?

