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• Research Challenge: Building Tools for DSLs 
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Domain-Specific Languages (DSLs) 

• Modeling languages that are customized for a 
particular problem 

• Concisely express system designs 
– No missing or extraneous features 
– Capture common, reusable patterns 
– Enforce architectural constraints 
– Use symbols native to the application domain 

• Easily modified, evolved, and composed 



Model Driven Engineering (MDE) 
• Model-driven engineering  (MDE) combines DSLs with model 

interpreters 
– Metamodels define elements, relationships, views, and constraints 
– Model interpreters leverage domain-specific models for analysis, code 

generation, and transformation 
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Challenge: Building Interpreters 
• Today, we have to write these tools by hand 

 
• For a DSL of modest size, tools average 18K SLOC and 

approximately 4 person-months 
 

• Developing and maintaining DSLs and interpreters is hard 
– Reusing model interpreters for different DSLs is hard 
– Little guidance on how to construct DSLs and interpreters 
– Semantics applied to models are opaque 
– Requires particular types of expertise 



Simplifying Insight 
Automatically synthesize domain-specific model interpreters the same 
way that domain-specific model editors are synthesized 
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Solution Approach 
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• Embed semantics in metamodels as properties of metatype instances 
• Use a metamodel interpreter to derive transformation rules from property 

values 
– Transformation rules are captured in a framework extension 

• Use a model interpreter framework to implement transformation logic 
– Transformation logic is applied according to transformation rules 
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The LIGHT Platform 

• A MDE platform for software architectures 
• Includes: 

– Metamodeling language and metamodel editor 
– Two metamodel interpreters with paired model interpreter 

frameworks 
– Example metamodels and framework extensions 

• Provides the extensibility to accommodate new 
language features and architectural analyses 
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LIGHT Benefits 
• Reduced implementation 

effort 
– Effort saved through code 

generation and reuse 
– Quantified by: 

• Lines of generated 
interpreter code 

• Total lines of reused 
interpreter code 

• Lines of generated code per 
domain-specific type 

• Lines of reused code per 
domain-specific type 

• Reduced maintenance 
effort 
– Due to relative ease of 

performing DSL 
modifications within a 
metamodel rather than 
within model interpreter 
source code 

– Quantified by number of 
metamodel objects 
altered vs. number of 
classes, methods, and 
SLOC altered 



Implementation Effort Metrics 
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COCOMO Estimates (avg):  Nominal settings  23.4 person-months 
   Favorable settings  4.2 person-months 



Maintenance Effort Metrics 
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Conclusions 

• Building and maintaining DSL tools is hard 
• Automatic synthesis of modeling tools reduces 

the cost of using DSLs 
• Tradeoffs in our approach: 

– Reduced flexibility 
– Additional metamodeling effort 
– Analysis and code generation tools must be 

chosen a priori 



Questions? 
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