
Utilizing Clone Detection For Domain

Analysis of Simulation Systems

Hasan SÖZER
Ozyegin University

Turkey

Merve ASTEKİN

Istanbul Technical University, TUBITAK BILGEM

Turkey

WICSA/ECSA 2012

24/08/2012 Helsinki, Finland

Motivation

 Systematic software reuse at the

architectural level

 increase software quality

 decrease the development time and costs

 Increasing complexity and the number of

projects makes it costly to manually

analyze commonality/variability among

different systems.

 tool support becomes essential

2

Approach

3

 Utilizing clone detection tools for supporting domain

analysis

 A case study based on four industrial simulation

software systems

 Examination of clone size, distribution and density both

within each system and across the four systems

 Identification of commonalities and reusable components

 Design/refine a reference architecture

Software Code Clones

4

 “Clones are segments of code that are similar according to

some definition of similarity.”

 Ira Baxter, 2002

 There can be different definitions of similarity based on:

 Program text

 Syntax

 Semantics

 Pattern

Clone Detection

5

 Mainly applied for supporting reverse
engineering and refactoring

 Usually applied to a particular system to
identify and eliminate clones to improve
maintainability

 Not utilized for detecting clones accross
systems to identify commonalities

 Previously proposed for supporting domain
analysis and software product line development
but not implemented

 No such case studies have been reported yet

Clone Detection Techniques

6

 Many techniques available

 Textual/Token/Metric Comparison

 Abstract Syntax Tree Comparison

 Program Dependency Graph Comparison

 Other Hybrid Techniques

 In our study, we have used CCFinder

 a token-based code clone detection tool

 detects duplicated tokens in the source code

 has a precision comparable to the other techniques

 efficient and scalable

Clone Detection Process

7

 CCFinder – Token-based clone detection tool

Case Study: Simulation Systems

8

 We have studied four different simulation systems:

 Analysis on software systems

 Different domain, architecture, size, development phase, development

team, etc.

Analysis Process and Results

9

 Analysis in three steps:

 I. Clone identification within each system

 II. Clone identification accross different systems

 III. Defining/refining a reference architecture

I. Clones within each system

10

1. Examination of the density of code clones.

2. Identification of the files that include most of the

detected clones.

3. Examination of the distribution of code clones

4. Identification of code clones that scatter throughout

most of the source files.

5. Manual identification and analysis of modules with high

clone density to pinpoint.

Results: Clones within each system

11

 Scattered clones mostly related to initialization messages

sent to the simulation engine infrastructure

 modularized in an architectural layer in some projects

 In two HLA-based projects, the mostly scattered clones

are related to the interaction creation and registration to

federation sections of modules.

 Federates shall interact with the runtime infrastructure for

exchanging events among simulation entities, in compliance

with HLA

 GUI component implementation structure leads to

significant scattering of clones in all subject systems.

II. Clones accross different systems

12

1. Analysis of the four subject systems in pairs

2. Intersecting clones are detected between the two

subject systems

3. Manual analysis of module-based clone distribution to

identify reusable component candidates across

simulation systems

4. Definition/Refinement of the system architecture based

on the analysis results

Results: Clones accross different systems

13

 Duplicate implementation of a domain-specific

algorithm

 The highest cloning rate for HLA-based projects

 Clones accumulated at only a small number of

modules

 The dynamic model of the simulated system/environment

 The signalization model functions of the domain components.

 Other common clones related to encoding/decoding rules

 Rules necessary for the operation of the Federation Object

Model (FOM) as part of HLA

III. Defining/Refining a Reference Architecture

14

 Reference Architecture with Identified Reusable Components

Defining/Refining a Reference Architecture

15

 The analysis of intersecting clones revealed various
functionality that are reused routinely in simulation
systems.

 Timing and logging mechanisms in Simulation Manager layer;

 Geographic calculator, dynamic model and signalization model
algorithms of domain platforms in Application Domain layer.

 Refinement by identifying additional reusable elements.

 The validity and relevance of the results

 confirmed by the domain experts and software architects
who have worked on the subject systems.

 confirmed by the consistency with existing architectural
components reused e.g., Simulation Manager, FOMLink, Object Manager,

Object Listener and Interaction Manager.

Summary and Conclusions

16

 A case study on utilizing clone detection for domain

analysis of simulation systems

 Analysis of four industrial software systems

 Identification of a set of domain concepts and reusable

components

 A reference architecture defined based on HLA

 Utilization of clone detection can be a viable approach

for supporting domain analysis and definition/refinement

of a reference architecture.

Future Work

17

 The effectiveness of other clone detection techniques

 especially those that focus on program logic/architectural

similarity will be investigated.

 Experimentation with more/different subject systems

THANK YOU!

18

