
COAST: An Architectural Style for Decentralized 
On-Demand Tailored Services

Michael M. Gorlick, Kyle Strasser and Richard N. Taylor
Institute for Software Research
University of California, Irvine

WICSA/ECSA 2012
Helsinki, Finland
24 August 2012



2

Context: Decentralized Computation
• Distributed computation among multiple spheres of authority

– Disaster response (Hurricane Katrina, New Orleans, August 2005)

• National, regional, state, local, NGOs, volunteers
– Large-scale engineering

• Boeing 787 Dreamliner or Airbus 350 XWB
– Scientific computing

• Bioinformatics (computational genomics or proteomics)
– Weather forecasting

• Many sensor networks
• Many models

– Computational health care
• Data-intensive personalized medicine (The Atlantic, July/August 2012)

– Logistics
– Just-in-time manufacturing

Simultaneous increase in both diversity and integration



3

Decentralized Computation: Many Paths
• Mastery of data exchange, RPC/RMI, and client-side scripting dominates 

decentralized applications
– MapReduce, Hadoop, Picollo (Power & Li, “Piccolo: Building Fast, Distributed 

Programs with Partitioned Tables,” OSDI, 2010)
– Globus, Condor (Thain, Tannenbaum & Livney, “Distributed Computing in Practice: 

The Condor Experience,” Concurrency: Practice and Experience, 2004)
– CORBA (RPC), Java (RMI), Erlang (message-passing)
– Ajax, Yahoo Pipes, Mashlight (Albinola et. al., “Mashlight: a Lightweight Mashup 

Framework for Everyone,” WWW 2009)

• Our approach to decentralized computation has evolved
– Khare & Taylor, “Extending the REpresentational State Transfer 

(REST)Architectural Style for Decentralized Systems,” ICSE, 2004
– Erenkrantz, Gorlick & Taylor, “From Representations to Computations: the 

Evolution of Web Architectures,” FSE, 2007
– Erenkrantz, “Computational REST: A new model for Decentralized, Internet-

Scale Applications,” PhD thesis, University of California, Irvine, 2009



Goals and Means
• Internet-scale decentralized applications

– Adaptivity
– Flexibility
– Agility
– Safety

• Secure communications and information
• Protect host computing resources
• Defined valued organizational assets

– Data bases, sensors, algorithms, users
• Means

– Stylistic rules
– Bound behavior of mobile code with architecture-centric mechanisms

• Principle of Least Authority (POLA)
• Capability-based security

– Safety through mobile code

4



5

Decentralized Computation: A Different Approach
• Exchange active computations among peers

– Code + run-time state (reified as closures and continuations)

• Novel security mechanism: Capability URL (CURL)
– Dictates where computations may go and how they communicate
– Bounds what visiting computations can do
– Limits resource consumption of computations
– Enforces complex constraints

• Architectural style: COmputAtional State Transfer (COAST)
– Build capability security into the architectural style

• Functional capability
– What can a visiting computation do?

• Communication capability
– With whom may that computation communicate?
– When may that computation communicate?
– How often may that computation communicate?

Architectural style can induce application security



6

COAST Design Intuitions
• Computations

– Factor your application into many collaborating computations
– Computations are cheap
– Move computations to assets: processors, data, bandwidth, sensors ...
– Computations isolated from one another except by message-passing

• CURLs
– Convey the right to communicate
– Can not be guessed or forged and are tamper-proof
– Carry limitations (time-limited offers, single-use, non-delegable, ...)
– Revocable by issuer at any time
– Critical to the COAST security model

• Challenge problem
– Soft real-time video distribution

• Many cameras to many consumers
• Video sharing and manipulation



COASTcast: A Real-time Video Distribution Application

7

Display Island A
Camera Island A

Display Island B

Camera Island B

User 
Interface 1

Relay 1
D1

Encoder 1
R1

Encoder 2
R2

Relay 2
D2

Decoder 1
U1R1

C1

User 
Interface 2

Canvas 1

Decoder 2
U2R2

C2

Canvas 2

Camera Island C

Animation #1: Video from camera to display



COASTcast The Movie: Two Separate Video Flows

8



9

COAST: The Architectural Style
• Applications are comprised of computations whose sole means of 

interaction is the asynchronous messaging of closures, continuations, 
and binding environments

• All computations execute within the confines of some execution site

• Computations are named by Capability URLs (CURLs)
– Computation x may deliver a message to computation y only if x holds a 

CURL u of y
– The interpretation of a message m delivered to computation y via CURL u 

of y is u-dependent

E

x

B
Execution

Engine
Binding

Environment



10

Display Island A
Camera Island A

Display Island B

Camera Island B

User 
Interface 1

Encoder 1
R1

Encoder 2
R2

Relay 2
D2

Decoder 1
U1R1

C1

User 
Interface 2

Canvas 1

Decoder 2
U2R2

C2

Canvas 2

Camera Island C

Canvas 3

Decoder 3
R1 U2

C3

Relay 1
D1

D3

COASTcast: A Real-time Video Distribution Application

Animation #2: Sharing Video



COASTcast The Movie: Sharing a Video

11



COASTcast: Moving a Video Source

12

Display Island A
Camera Island A

Display Island B

Camera Island B

User 
Interface 1

Encoder 1
R1

Encoder 2
R2

Relay 2
D4

Decoder 1
U1R1

C1

User 
Interface 2

Canvas 1

Decoder 2
U2R2

C2

Canvas 2

Camera Island C

Canvas 3

Decoder 3
R1 U2

C3

Relay 1
D1

D3

Decoder 4
R2 U1

C4

Canvas 4

D2



COASTcast: Moving a Video Source

13

Display Island A
Camera Island A

Display Island B

Camera Island B

User 
Interface 1

Encoder 2
R2

Relay 2
D4

Decoder 1
U1R1

C1

User 
Interface 2

Canvas 1

Decoder 2
U2R2

C2

Canvas 2

Camera Island C

Canvas 3

Decoder 3
R1 U2

C3

Relay 1
D1

D3

Decoder 4
R2 U1

C4

Canvas 4

D2

Encoder 3
R1



COASTcast The Movie: Change the Video Source

14



Related Work
• Capability Security

– Confused Deputy (Hardy, “The confused deputy: (or why capabilities might have 
been invented),” SIGOPS Operating Systems Review,1988)

– Lambda calculus (Rees, “A security kernel based on the lambda calculus,” PhD 
thesis, MIT, 1996)

– Confinement (Shapiro, “EROS: A Capability System,” PhD thesis, University of 
Pennsylvania, 1999)

– Revocation & multi-level security (Miller & Shapario, Paradigm regained: 
Abstraction mechanisms for access control, ASIAN‘03, 2003)

– Object-Capability and Capability Languages (Miller, Robust composition: 
Towards a unified approach to access control and concurrency control, PhD thesis, 
John Hopkins University, 2006)

– Non-delegation (Murray & Grove, “Non-delegatable authorities in capability 
systems,” Journal of Computer Security, 2008)

– Analytics (Murray, “Analysing the security properties of object- capability patterns,” 
PhD thesis, University of Oxford, 2010) 

– Information flow control (Birgisson, Russo & Sabelfeld, “Capabilities for 
information flow,” PLAS’11, 2011)

15



Future Work/Summary

• Future Work
– Digital contract negotiation (Alegria Baquero)
– Collaboration architectures for disaster response (Christoph Dorn)
– Dynamic software update
– Electronic health systems (emphasis on security and privacy)
– Adaptive robotics

• Summary
– Results suggest COAST is a step forward for decentralized applications

• Expressive (enough), efficient (enough) and secure (enough) for a 
variety of domains

– CURLs essential to robust COAST security
– Mobile code is manageable given the tools of functional and communication 

capability
– Architectural style can make significant contributions to application security

16


