
© 2012 Carnegie Mellon University 

A Reference Architecture for 

Mobile Code Offload in Hostile 

Environments 

Grace A. Lewis (glewis@sei.cmu.edu) 
Soumya Simanta (ssimanta@sei.cmu.edu) 
Ed Morris (ejm@sei.cmu.edu) 

Carnegie Mellon University Software Engineering Institute 
 

Kiryong Ha (krha@cs.cmu.edu) 
Mahadev Satyanarayanan(satya@cs.cmu.edu) 

Carnegie Mellon University School of Computer Science 

 
 
 
 

 
 

mailto:glewis@sei.cmu.edu


2 

Reference Architecture for Mobile Code Offload 

WICSA 2012 

© 2012 Carnegie Mellon University 

Motivation 

First responders and others operating in crisis and hostile environments 
increasingly make use of handheld devices to help with compute-
intensive tasks such as speech and image recognition, natural language 
processing, decision-making and mission planning 

 

Challenges for mobile devices in hostile environments 

• Mobile devices offer less computational power than conventional desktop or 
server computers 

• Computation-intensive tasks take a heavy toll on battery power 

• Networks in hostile environments are often unreliable and bandwidth is 
limited and inconsistent  



3 

Reference Architecture for Mobile Code Offload 

WICSA 2012 

© 2012 Carnegie Mellon University 

Cyber-Foraging 

Cyber-foraging is the leverage of external resources to augment the 
capabilities of resource-limited devices 

One form of cyber-foraging is code offload from mobile devices to the 
cloud to conserve battery power, increase computational capability, or to 
provide access to data resources 

Most cyber-foraging solutions rely on: 

• conventional Internet for connectivity to the cloud 

• strategies that tightly couple applications running on handheld devices to the 
servers on which computation is offloaded 

 

These solutions are not appropriate for hostile environments because 
they do not address the challenge of unreliable networks and dynamic 
environments 



4 

Reference Architecture for Mobile Code Offload 

WICSA 2012 

© 2012 Carnegie Mellon University 

Code Offload in Hostile Environments* 

Cloudlets as Offload 

Elements 

• Discoverable, generic, 
stateless servers located in 
single-hop proximity of mobile 
devices 

• Run a separate virtual 
machine (VM) for each 
offloaded application 

• Enhance processing capacity 
and conserve battery power 
while at the same time 
providing ease of deployment 
in the field 

• Communication with the 
central core is only needed 
for provisioning 

 

 
* K. Ha, G. Lewis, S. Simanta, S and M. Satyanarayanan. Code Offload in Hostile Environments. Carnegie Mellon University, CMU-CS-11-

146, 2011. http://reports-archive.adm.cs.cmu.edu/anon/anon/2011/CMU-CS-11-146.pdf 

Central

Core

[Enterprise Cloud]

Offload

Element

[Cloudlet]

Offload

Element

[Cloudlet]

Offload

Element

[Cloudlet]

Offload

Element

[Cloudlet]

Single-Hop Network

Multi- or Single-Hop Network



5 

Reference Architecture for Mobile Code Offload 

WICSA 2012 

© 2012 Carnegie Mellon University 

VM Synthesis as a Strategy for Code Offload 

Application overlays  

• Correspond to the server portion of a mobile app 

• Created once, offline, by qualified personnel 

Only constraint is that cloudlets need to store a copy of the same Base VM that was 

used for overlay creation 

During execution 

• Mobile device discovers available cloudlets 

• Mobile device uploads application overlay to selected cloudlet 

• Cloudlet applies application overlay to the Base VM and produces a Complete VM 

• Cloudlet starts Complete VM which is now ready for application execution 

Start Base 

VM

Base VM 

Disk Image

Install 

Application

Save Modified 

VM Disk Image 

Complete VM 

Disk Image

Obtain Base VM 

from Central 

Core

Stop VM

Calculate Diff 

Between 

Complete and 

Base VM Image

VM Disk Image 

Overlay

Application 

Overlay



6 

Reference Architecture for Mobile Code Offload 

WICSA 2012 

© 2012 Carnegie Mellon University 

Reference 
Architecture 
for Code 
Offload Based 
on VM 
Synthesis 

Cloudlet HostMobile Client

Legend

System 

Boundary

Cloudlet-

Ready 

Client 

App 1

Custom Runtime 

Component

Cloudlet 

Client

Application 

Overlay n

File Read/

WriteCall

File

VM Manager

Guest VM 1

Server 1

Cloudlet 

Server

Discovery Service 

Cloudlet Server  IP Address/Port

Broadcast

Base VM 

Image

3
rd

 Party 

Runtime 

Component

Application 

Overlay 2

Application 

Overlay 1

Application Overlay

Cloudlet-

Ready 

Client 

App 2

Cloudlet-

Ready 

Client 

App n

...

...

Guest VM 2

Server 2

Guest VM n

Server n

...



7 

Reference Architecture for Mobile Code Offload 

WICSA 2012 

© 2012 Carnegie Mellon University 

Prototype 1: 
Initial Prototype 

Application Platform Language Application Size 

(MB) 

Base VM Disk 

Image Size (MB) 

VM Disk Image 

Overlay Size (MB) 

OBJECT Linux C++ 27.50 3546 165.32 

FACE Windows XP C++ 17.65 3073   43.55 

SPEECH Linux Java 51.04 3546 176.23 

NULL Linux N/A N/A 3546     0.12 

 



8 

Reference Architecture for Mobile Code Offload 

WICSA 2012 

© 2012 Carnegie Mellon University 

Prototype 1: Analysis 

Limitations 

• Large overlays 

• Long Start VM times 

• Implementation complexity 

Major Changes for Prototype 2 

• Disk image format: Changed from 
raw to qcow2 

• Memory snapshot overlay plus disk-
image overlay 

• KVM in NAT mode and port 
redirection 

 

Start 

Base 

VM

Base VM 

Disk Image

Install 

Application

Complete 

Memory 

Snapshot 

Suspend 

VM

Save Disk 

and 

Memory 

Snapshots 

Complete 

Disk 

Snapshot

Obtain Base 

VM from 

Central Core

Start 

Application

Base 

Memory 

Snapshot

Calculate Diff Between 

Complete Snapshots and 

Base Snapshots

VM Disk 

Image 

Overlay

Memory 

Snapshot 

Overlay

Application Overlay

Base 

Disk 

Snapshot



9 

Reference Architecture for Mobile Code Offload 

WICSA 2012 

© 2012 Carnegie Mellon University 

Prototype 2: 
Revised Prototype 

Application Base VM 

Disk Image 

qcow2 (MB) 

Base Disk 

Snapshot  

qcow2 (MB) 

Base Memory 

Snapshot 

(MB) 

Compressed VM 

Disk Image Overlay 

(MB) 

Compressed 

Memory Snapshot 

Overlay (MB) 

OBJECT 3558 17 554 94 293 

FACE 2421 15 278 71 101 

SPEECH 3558 17 554 86 257 

NULL 3558 17 554  1    3 

 



10 

Reference Architecture for Mobile Code Offload 

WICSA 2012 

© 2012 Carnegie Mellon University 

Prototype 2: Analysis Advantages 

• Shorter VM Synthesis and Start 
VM times 

• Simple implementation 

Limitation 

• Very large overlays lead to 
increased battery consumption 

For the revised prototype to pay 
off, the efficiencies gained in VM 
Synthesis and Start VM would 
require supplementation with 
greater bandwidth 



11 

Reference Architecture for Mobile Code Offload 

WICSA 2012 

© 2012 Carnegie Mellon University 

Current and Future Work 

Current work 

• Application-level virtualization 

– Using static and dynamic analysis tools to create packages with all dependencies— 

early results show that packages are 20% the size of overlays 

– Tradeoff is anticipation of necessary “containers” 

• Mobility-induced cloudlet handoffs to transfer state between cloudlets with minimal 

interruption to a moving user 

– Challenges have been on the networking side and not the actual VM migration 

Future work 

• Rapid VM synthesis 

– Extension of the discovery protocol to enable VM caching so that overlays do not 

always require transmission  

– Exploiting of multicore architecture to parallelize VM synthesis activities  

• Cloudlet-selection mechanism that maps application needs to cloudlet characteristics 

exposed as cloudlet metadata during the cloudlet-discovery process 

 



12 

Reference Architecture for Mobile Code Offload 

WICSA 2012 

© 2012 Carnegie Mellon University 

Summary 

Cloudlets are discoverable, localized, stateless servers running one or 
more virtual machines (VMs) on which mobile devices can offload 
expensive computation 

• Provide a general-purpose strategy for code offload and resource 
optimization in hostile environments 

• Enhance processing capacity and conserve battery power while at the same 
time providing ease of deployment and application flexibility in the field 

The two implementations of the proposed references architecture show 
the tradeoffs between overlay size, battery consumption and application-
ready time 

• Operationalization of the concept will require further reduction in overlay sizes 
and incorporation of strategies for minimizing or eliminating overlay transfer 

 



13 

Reference Architecture for Mobile Code Offload 

WICSA 2012 

© 2012 Carnegie Mellon University 

Contact Information 

Grace A. Lewis 

Research, Technology and Systems Solutions (RTSS) Program 
Advanced Mobile Systems (AMS) Initiative 

 

Software Engineering Institute 
4500 Fifth Avenue 
Pittsburgh, PA 15213-2612 
USA 
 

Phone:  +1 412-268-5851 
Email:  glewis@sei.cmu.edu 
WWW: http://www.sei.cmu.edu/staff/glewis 
 

http://www.sei.cmu.edu/staff/glewis
http://www.sei.cmu.edu/staff/glewis


14 

Reference Architecture for Mobile Code Offload 

WICSA 2012 

© 2012 Carnegie Mellon University 

Copyright 2012 Carnegie Mellon University and IEEE 

This material is based upon work funded and supported by the Department of 
Defense under Contract No. FA8721-05-C-0003 with Carnegie Mellon University 
for the operation of the Software Engineering Institute, a federally funded 
research and development center. 

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE 
ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN “AS-IS” BASIS. 
CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, 
EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT 
NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR 
MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE 
OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE 
ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM 
PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT. 

This material has been approved for public release and unlimited distribution 
except as restricted below. 

Carnegie Mellon® is registered in the U.S. Patent and Trademark Office by 
Carnegie Mellon University. 

DM-0000001 


