Heiko Koziolek, Dominik Domis, Thomas Goldschmidt, Philipp Vorst, Roland Weiss
ABB Corporate Research, Ladenburg, Germany

A Case Study on
Lightweight Architecture Sustainability Analysis

Large-scale Industrial Control Systems
Challenge: Software Architecture Erosion

Circles = components, Colors = subsystems,
Size = lines of code, Arrows = dependencies

MORPHOSIS
Multi-perspective SW Architecture Analysis Method

Evolution Scenario Analysis

Method

1. Literature search:
sustainability
evaluation of software
architectures

Selected method:

7 evolution
scenarios most

2. Top Down
Elicitation:
8 interviews with
domain experts

3. Bottom Up
Elicitation:
3-month job rotation,
document analysis

4. Artifact analysis:
Models, code, docs;
additional interviews

List of 31 generic
evolution

© ABB August 24, 2012 | Slide 4

7 refined, priorized

P. Clements, R.
Kazman, and M. Klein,
Evaluating software
architectures:
methods and case
studies.
Addison-Wesley,
Reading, MA, 2002.

H. Koziolek
Sustainability
evaluation of software
architectures: A
systematic review.
Proc. QoSA'11, p. 3-12,
ACM, June 2011.

P. Bengtsson, N.
Lassing, J. Bosch, and
H. van Vliet,
Architecture-level
modifiability analysis
(ALMA)

Journal of Systems and
Software, vol. 69, no. 1-
2, pp. 129-147, 2004

Evolution Scenario Analysis

Results
Status: 17
- mid 2011 0,9 1 @ 1
- mid 2012 0.8 - 20713
> 0,7 - Sco3
= Project
Q 06 - Sd 9 4
s started In research
E 05 -
o
Q 04 -
o
5 0,3 - Scenario 5
§ Unlikel
0,2 -
, in 2013
ded
0,1 1 Scenario 7
In rese
0 T T T T T 1
2011 2012 2013 2014 2015 2016 2017
Year when the evolution scenario becomes relevant

© ABB August 24, 2012 | Slide 5

Architectural Enforcement
Derived Module Dependency Rules from UML Tool

- Goal: Automatic checking of allowed dependencies
= Derived dependency rules from UML layer diagrams
= Created name mapping from modules in UML to code

= Constructed CQL rule for each module

class Module Structure: Operations Client/

«group»
Presentation Element

«layer»
Operations Client Libraries and APIs

allowed to use
5
3
<< --2
3
8

«group»
Operation Client Services

EnteitiSe Architect UML model NDepend CQL rule
) Runtime System Access | (Code Query Language)

Augpst 24, 2012 ¢ @lbdrife »

Se»

Architecture-level Metric Tracking

e S

h—,

S. Sarkar, G. M. Rama, and A. C. Kak,

Architecture-level Metric Tracking e
Example: Module Interaction Stability e

() ‘ Instability of a\ Modules m
Layer 4 j}g module) depends on]
Layer 3 0.5

VL
Layer 2 0.5 06 || 0.5 Modules that depend on m]
B N b~

Y W
Layer 1 |0i‘0“0A

- Characterizes software according
to the principle of Maximization
of Stand-Alone Extensibility

>

Set of stable dependencies to
lower layers

= Promotes the use of stable modules in
lower layers

[For all mo%ﬁ

© ABB August 24, 2012 | Slide 8

MORPHOSIS
Lessons learned

= Perceived good cost / benefit ratio
- Low analysis overhead, high automation
- However: benefits are not quantified yet

- Quantifying the costs for evolution scenarios is hard
- Impact prediction difficult if code not available

- Externalizing and prioritizing evolution scenarios provides
focus to plan mitigation measures

= Architecture enforcement raises developer awareness
- Higher regard for the architecture description
- High developer interest in metrics

= Desire to improve quality,
less concerned about being judged

© ABB August 24, 2012 | Slide 1

MORPHOSIS
Conclusions

= Evolution Scenario Analysis

= Provided detailed description template
= Architecture Enforcement

- Integrated rules from UML model into build process
= Architecture-level Metrics Tracking

- Automated tracking of novel architecture metrics

= Future Work
- Re-evaluate / add evolution scenarios

- Conduct a longitudinal study correlating metrics
to actual maintenance costs

© ABB August 24, 2012 | Slide 1

Architecture Enforcement
Tool Support: NDepend (C#), CppDepend (C++)

Custom queries on

(box = class, size = LOC)

the source code with Code Metrics

J [Metric visualization

SQL-like Ianguage

Code & design rules

N

Query results] [Classes violating rules

MORPHOSIS
Discussion

= Lightweight method?
= Scenario analysis w/o workshops
- Automated metrics reporting
- In case of conflicting stakeholders: better run ATAM
= Substantial architecture redesign unlikely
« Method aims at selective improvements
= Future Work
- Re-evaluate evolution scenarios

- Conduct a longitudinal study correlating metrics
to actual maintenance costs

© ABB August 24,2012 | Slide 13

