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Large-scale Industrial Control Systems
Challenge: Software Architecture Erosion

Circles = components, Colors = subsystems,
Size = lines of code, Arrows = dependencies



MORPHOSIS
Multi-perspective SW Architecture Analysis Method



Evolution Scenario Analysis

Method

1. Literature search:
sustainability
evaluation of software
architectures

Selected method:

7 evolution
scenarios most

2. Top Down
Elicitation:
8 interviews with
domain experts

3. Bottom Up
Elicitation:
3-month job rotation,
document analysis

4. Artifact analysis:
Models, code, docs;
additional interviews

List of 31 generic
evolution
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Evolution Scenario Analysis

Results
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Architectural Enforcement
Derived Module Dependency Rules from UML Tool

- Goal: Automatic checking of allowed dependencies
= Derived dependency rules from UML layer diagrams
= Created name mapping from modules in UML to code

= Constructed CQL rule for each module

class Module Structure: Operations Client/

«group»
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Architecture-level Metric Tracking
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S. Sarkar, G. M. Rama, and A. C. Kak,

Architecture-level Metric Tracking e
Example: Module Interaction Stability e
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- Characterizes software according
to the principle of Maximization
of Stand-Alone Extensibility

>

Set of stable dependencies to
lower layers

= Promotes the use of stable modules in
lower layers
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MORPHOSIS
Lessons learned

= Perceived good cost / benefit ratio
- Low analysis overhead, high automation
- However: benefits are not quantified yet

- Quantifying the costs for evolution scenarios is hard
- Impact prediction difficult if code not available

- Externalizing and prioritizing evolution scenarios provides
focus to plan mitigation measures

= Architecture enforcement raises developer awareness
- Higher regard for the architecture description
- High developer interest in metrics

= Desire to improve quality,
less concerned about being judged
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MORPHOSIS
Conclusions

= Evolution Scenario Analysis

= Provided detailed description template
= Architecture Enforcement

- Integrated rules from UML model into build process
= Architecture-level Metrics Tracking

- Automated tracking of novel architecture metrics

= Future Work
- Re-evaluate / add evolution scenarios

- Conduct a longitudinal study correlating metrics
to actual maintenance costs
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Architecture Enforcement
Tool Support: NDepend (C#), CppDepend (C++)

Custom queries on

(box = class, size = LOC)

the source code with Code Metrics

J [ Metric visualization

SQL-like Ianguage

Code & design rules

N

Query results ] [ Classes violating rules




MORPHOSIS
Discussion

= Lightweight method?
= Scenario analysis w/o workshops
- Automated metrics reporting
- In case of conflicting stakeholders: better run ATAM
= Substantial architecture redesign unlikely
« Method aims at selective improvements
= Future Work
- Re-evaluate evolution scenarios

- Conduct a longitudinal study correlating metrics
to actual maintenance costs
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