

Heiko Koziolek, Dominik Domis, Thomas Goldschmidt, Philipp Vorst, Roland Weiss ABB Corporate Research, Ladenburg, Germany

MORPHOSIS

A Case Study on Lightweight Architecture Sustainability Analysis

Large-scale Industrial Control Systems Challenge: Software Architecture Erosion

Circles = components, Colors = subsystems, Size = lines of code, Arrows = dependencies

MORPHOSIS Multi-perspective SW Architecture Analysis Method

Evolution Scenario Analysis Method

P. Clements, R.
Kazman, and M. Klein,
Evaluating software
architectures:
methods and case
studies.
Addison-Wesley,
Reading, MA, 2002.

H. Koziolek
Sustainability
evaluation of software
architectures: A
systematic review.
Proc. QoSA'11, p. 3-12,
ACM, June 2011.

H. van Vliet, Architecture-level modifiability analysis (ALMA) Journal of Systems and Software, vol. 69, no. 1-2, pp. 129–147, 2004

P. Bengtsson, N. Lassing, J. Bosch, and

Evolution Scenario Analysis Results

Status:

- mid 2011
- mid 2012

Architectural Enforcement Derived Module Dependency Rules from UML Tool

- Goal: Automatic checking of allowed dependencies
 - Derived dependency rules from UML layer diagrams
 - Created name mapping from modules in UML to code
 - Constructed CQL rule for each module

Architecture-level Metric Tracking

Architecture-level Metric Tracking Example: Module Interaction Stability

S. Sarkar, G. M. Rama, and A. C. Kak, "API-based and information-theoretic metrics for measuring the quality of software modularization," IEEE Trans. Softw. Eng., vol. 33, pp. 14–32, January 2007.

- Characterizes software according to the principle of Maximization of Stand-Alone Extensibility
- Promotes the use of stable modules in lower layers

MORPHOSIS Lessons learned

- Perceived good cost / benefit ratio
 - Low analysis overhead, high automation
 - However: benefits are not quantified yet
- Quantifying the costs for evolution scenarios is hard
 - Impact prediction difficult if code not available
- Externalizing and prioritizing evolution scenarios provides focus to plan mitigation measures
- Architecture enforcement raises developer awareness
 - Higher regard for the architecture description
- High developer interest in metrics
 - Desire to improve quality, less concerned about being judged

MORPHOSIS Conclusions

- Evolution Scenario Analysis
 - Provided detailed description template
- Architecture Enforcement
 - Integrated rules from UML model into build process
- Architecture-level Metrics Tracking
 - Automated tracking of novel architecture metrics
- Future Work
 - Re-evaluate / add evolution scenarios
 - Conduct a longitudinal study correlating metrics to actual maintenance costs

Power and productivity for a better world™

Architecture Enforcement Tool Support: NDepend (C#), CppDepend (C++)

MORPHOSIS Discussion

- Lightweight method?
 - Scenario analysis w/o workshops
 - Automated metrics reporting
- In case of conflicting stakeholders: better run ATAM
- Substantial architecture redesign unlikely
 - Method aims at selective improvements
- Future Work
 - Re-evaluate evolution scenarios
 - Conduct a longitudinal study correlating metrics to actual maintenance costs

