Semantic Analysis of Dynamic Connector Based Architecture Styles

Guoxin Su Mingsheng Ying Chengqi Zhang

Faculty of Engineering and Information Technology University of Technology, Sydney

WICSA/ECSA 2012

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

Outline

Background: where our problem locates

Problem: a motivating example and behavioural properties

Model: formalisation of architectural concepts and properties

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

Analysis: algorithms for checking desired properties

Background

 Dynamism of connector-based architectural styles: insertion and removal of components

- Type- vs instance-level descriptions and component instantiation: parameterisation or semantic conformance
- Behavioural modeling

Background

- Dynamism of connector-based architectural styles: insertion and removal of components
- Type- vs instance-level descriptions and component instantiation: parameterisation or semantic conformance
- Behavioural modeling

Background

- Dynamism of connector-based architectural styles: insertion and removal of components
- Type- vs instance-level descriptions and component instantiation: parameterisation or semantic conformance
- Behavioural modeling

Syntax of textual specification:

if state = x then

if pre-conditions then

input/output and effects [and state := y]

- The system is connector-based
- A structural veiw and a scenario:

 Components can join in and disconnect to the system dynamically

Type-level specification

```
Component type CLIENT(c : clt, s : sev):
```

```
\label{eq:state} \begin{array}{l} \text{if } \textit{state} = 0 \textit{ then} \\ \langle \textit{request}, \textit{c}, \textit{s} \rangle ! \textit{ and } \textit{state} := 1 \\ \text{if } \textit{state} = 1 \textit{ then} \\ \textit{if true then} \\ \langle \textit{result}, \textit{c}, \textit{s} \rangle ? \textit{ and } \textit{state} := 2 \\ \text{if true then} \\ \langle \textit{error}, \textit{c}, \textit{s} \rangle ? \textit{ and } \textit{state} := 2 \end{array}
```


Component type SERVER(s : sev):

```
if state = 0 then

\langle register, s \rangle! and state := 1

if state = 1 then

if true then

\langle involve, x : clt \rangle? and

enqueue(x, Que)

if empty(Que) = 'n' then

let y = head(Que) and

\langle return, y \rangle! and dequeue(Que)

if empty(Que) = 'y' then

\langle unregister, s \rangle! and state := 2
```


Connector CSCON:

```
if state_1 = 0 then
   \langle request, x : clt, y : sev \rangle?
if state_1 = 1 then
   if y \in RegSev then
      (involve, x, y)! and state_1 := 0
  else \langle error, x, y \rangle! and state<sub>1</sub> := 0
if state_2 = 0 then
   \langle return, z : clt, w : sev \rangle? and state<sub>2</sub> := 1
if state_2 = 1 then
   \langle result, z, w \rangle! and state_2 := 0
if state_3 = 0 then
   if true then
      \langle register, v : sev \rangle? and
      RegSev := RegSev \cup \{v\}
   if true then
      \langle unregister, u : sev \rangle? and
      RegSev := RegSev \setminus \{u\}
```


Instance-level specification

Component instance Client₁ of CLIENT:

```
if state = 1 then

\langle request, c_1, s_1 \rangle! and state := 2

if state = 2 then

if true then

\langle result, c_1, s_1 \rangle? and state := 1

if true then

\langle error, c_1, s_1 \rangle? and state := 1
```


Component instance Client₂ of CLIENT:

```
if state = 0 then
  (request, c_2, s_1)? and state := 1
if state = 1 then
  if true then
     (result, c_2, s_1)? and state := 4
  if true then
     \langle error, c_2, s_1 \rangle? and state := 2
if state = 2 then
  choose any \in sev and
  \langle request, c_2, any \rangle! and state := 3
if state = 3 then
  if true then
     (result, clt_2, any)? and state := 4
  if true then
     \langle error, clt_2, any \rangle? and state := 4
```


Component instance Server1 of SERVER:

```
if state = 0 then
  if upgrade = 'done' then
     \langle register, s_1 \rangle! and state := 1
if state = 1 then
  if empty(Que) = 'y' and
     upgrade = 'ready' then
     \langle unregister, s_1 \rangle! and
     state = 0
  if true then
     (involve, x : clt)? and
     enqueue(x, Que)
  if empty(Que) = 'n' then
     let y = head(Que) and
     \langle return, y \rangle! and dequeue(Que)
```


・ロト・「聞・・「聞・・「聞・・」 しゃ

Problems

Basic properties for the client-server system:

- Whether the system is deadlock-free?
- Whether each component, if not terminated, will be deprived of the right to interact with the connector?
- Whether CSCON restricts the system's behaviours?
- Whether behaviours of each component, if given a suitable configuration, are realisable?
- Can we know the answers to the above questions without exhausting all possibility of runtime system configurations?
- A pitfall: the semantic variances between component types and instances

Problems

Basic properties for the client-server system:

- Whether the system is deadlock-free?
- Whether each component, if not terminated, will be deprived of the right to interact with the connector?
- Whether CSCON restricts the system's behaviours?
- Whether behaviours of each component, if given a suitable configuration, are realisable?
- Can we know the answers to the above questions without exhausting all possibility of runtime system configurations?
- A pitfall: the semantic variances between component types and instances

Process Algebra

Syntax: \mathcal{N} a set of names, $a_i \in \mathcal{N}$.

$$\lambda ::= \langle a_1, \dots, a_k \rangle \qquad messages$$

$$\alpha, \beta, \gamma ::= \lambda? \mid \lambda! \mid \tau \qquad actions$$

$$P, Q ::= X \mid nil \mid P \times Q \mid P \parallel Q \qquad processes$$

$$M, M' ::= M + M' \mid \lambda?.P \mid \lambda!.P$$

Operation semantics:

$$\frac{-}{\alpha . P \xrightarrow{\alpha} P} \qquad \frac{P \xrightarrow{\alpha} P' \quad X \stackrel{\circ}{=} M}{X \xrightarrow{\alpha} P'} \\
\frac{P \xrightarrow{\alpha} P'}{P + Q \xrightarrow{\alpha} P'} \qquad \frac{P \xrightarrow{\alpha} P'}{P \times Q \xrightarrow{\alpha} P' \times Q} \\
\frac{P \xrightarrow{\tau} P'}{P \parallel Q \xrightarrow{\tau} P' \parallel Q} \qquad \frac{P \xrightarrow{\lambda !} P' \quad Q \xrightarrow{\lambda ?} Q'}{P \parallel Q \xrightarrow{\tau} P' \parallel Q'}$$

where *M* is ' \parallel '- and '×'-free.

- From behavioural specification to PA processes
- CSCON, CLIENT, SERVER, client₁, ect. as PA processes

*Recursive equations for Server₁

(1) if $Que = \epsilon$ and update = 'ready', then

$$X[2,\epsilon] \stackrel{\circ}{=} \sum_{a \in Clt} \langle involve, a \rangle$$
? $X[3,a] + \langle unregister, s \rangle$! $X[3,\epsilon]$

(2) if $Que \neq \epsilon$, then

$$X[2, Que] \stackrel{\circ}{=} \sum_{a \in Clt} \langle involve, a \rangle$$
?. $X[2, Que_a] + \langle return, c \rangle$!. $X[2, Que']$

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

where $Que_a = enqueue(a, Que)$ such that $a \in clt$, c = head(Que), and Que' = dequeue(Que).

An informal glimpse

- an architecture type = component types + a connector
- an architecture (instance) = components + a connector

Definition (Components, connectors, component types) *Components* are '||'-free processes and *connectors* are '||'- and '×'-free processes. *Component types* are '||'-free abstract processes of the form

$$\mathcal{I} = \mathsf{Q}(\mathbf{x}_1 : A_1, \ldots, \mathbf{x}_m : A_m)$$

where (1) $A_i \subseteq \mathcal{N}$ ($1 \le i \le m$) are name spaces, and (2) x_i ($1 \le i \le m$) are formal parameters of \mathcal{I} with x_1 being a distinguished one (which, informally specking, is reserved for the name of an instance of \mathcal{I}).

An informal glimpse

- an architecture type = component types + a connector
- an architecture (instance) = components + a connector

Definition (Components, connectors, component types) *Components* are '||'-free processes and *connectors* are '||'- and '×'-free processes. *Component types* are '||'-free abstract processes of the form

$$\mathcal{I} = \mathsf{Q}(\mathbf{x}_1 : \mathbf{A}_1, \ldots, \mathbf{x}_m : \mathbf{A}_m)$$

where (1) $A_i \subseteq \mathcal{N}$ ($1 \le i \le m$) are name spaces, and (2) x_i ($1 \le i \le m$) are formal parameters of \mathcal{I} with x_1 being a distinguished one (which, informally specking, is reserved for the name of an instance of \mathcal{I}).

Definition (Architecture types and instances)

A (dynamic, connector-based) *architecture type* is represented as the tuple

$$\mathcal{A}^t = \langle \mathcal{I}_1, \ldots, \mathcal{I}_n, \mathbf{C} \rangle$$

An *architecture instance* of A^t is the tuple

$$\mathcal{A} = \langle P_1^1, \dots, P_1^{m_1}, \dots, P_n^{m_n}, C \rangle$$

where P_i^j conforms to \mathcal{I}_i .

Example

 $CStype = \langle CLIENT, SERVER, CSCON \rangle$ $CSsystem = \langle Client_1, Client_2, \dots, Server_1, \dots, CSCON \rangle$

Definition (Canonical components) If $a \in A_1$, we call

$$\mathcal{I}\langle \pmb{a}
angle = \sum_{\pmb{a}_2 \in \pmb{A}_2,...,\pmb{a}_2 \in \pmb{A}_m} \pmb{Q}\langle \pmb{a}, \pmb{a}_2, \dots \pmb{a}_m
angle$$

a canonical component of \mathcal{I} .

Definition (Component conformance)

P conforms to $\mathcal{I}\langle a \rangle$, denoted $\mathcal{I}\langle a \rangle \vdash P$, if there is $R \subseteq Proc \times Proc$ such that $\langle \mathcal{I}\langle a \rangle, P \rangle \in R$ and for each $\langle P_1, P_2 \rangle \in R$:

- if $P_1 = nil$ then $\langle \mathcal{I} \langle a \rangle, P_2 \rangle \in R$ or $P_2 = nil$;
- if $P_1 \xrightarrow{\alpha} P'_1$ and $P_1 \neq \mathcal{I}\langle a \rangle$ and $P_2 \xrightarrow{\alpha} P'_2$ and $\langle P'_1, P'_2 \rangle \in R$ for some P'_2 ;
- if $P_2 \xrightarrow{\alpha} P'_2$ then $P_1 \xrightarrow{\alpha} P'_1$ and $\langle P'_1, P'_2 \rangle \in R$ for some P'_1 .

・ロ・・ 日・・ 日・・ 日・ うくぐ

Theorem (Properties of ⊢)

1.
$$\mathcal{I}\langle a \rangle \vdash \mathcal{I}\langle a \rangle$$
,
2. $\mathcal{I}\langle a \rangle \vdash P_1 \& \mathcal{I}\langle a \rangle \vdash P_2 \Rightarrow \mathcal{I}\langle a \rangle \vdash P_1 + P_2$,
3. $\mathcal{I}\langle a \rangle \vdash P_1 \& P_1 \simeq P_2 \Rightarrow \mathcal{I}\langle a \rangle \vdash P_2$,
4. $\mathcal{I}\langle a \rangle \vdash P \Rightarrow \mathcal{I}\langle a \rangle \vdash P^*$,
5. \vdash is decidable.

Example

 $\begin{array}{l} \textit{CLIENT} \langle c_1 : \textit{clt} \rangle \vdash \textit{Client}_1 \\ \textit{CLIENT} \langle c_2 : \textit{clt} \rangle \vdash \textit{Client}_2 \\ \textit{SERVER} \langle s_1 : \textit{sev} \rangle \vdash \textit{Server}_1 \end{array}$

Definition (Component configurations)

A component configuration of \mathcal{A}^t is a process of the form

$$F = P_1 \langle a_1 \rangle \times \ldots \times P_n \langle a_n \rangle$$

such that, for each $1 \le i \ne j \le n$, $a_i \ne a_j$ and $\mathcal{I}_i \langle a_i \rangle \vdash P_i$ for some interface \mathcal{I}_i of \mathcal{A}^t .

Definition (Architectures revisited)

The semantics of an architecture A can be considered as the process $F \parallel C$.

Example

 $CSsystem = (client_1 \times client_2 \times ... \times server_1 \times ...) \parallel CSCON$

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

Properties

Definition (Deadlock-freedom)

(1) An architecture instance $\mathcal{A} = F \parallel C$ is *deadlock-free*, if the following proposition holds: if $\mathcal{A} \xrightarrow{*} F' \parallel C'$ and $F' \longrightarrow$, then $F' \parallel C' \longrightarrow$. (2) An architecture type \mathcal{A}^t is deadlock-free if each instance of \mathcal{A}^t is deadlock-free.

Definition (Non-starvation)

 $\mathcal{A} = (F \times P) \parallel C$ is *non-starving*, if the following holds: if $\mathcal{A} \xrightarrow{*} (F' \times P') \parallel C'$ and $P' \longrightarrow$, then there are F'' and C'' such that $F' \parallel C' \xrightarrow{*} F'' \parallel C''$ and $P' \parallel C'' \longrightarrow$. (2) An architecture type \mathcal{A}^t is non-starving if each instance of \mathcal{A}^t is non-starving.

Lemma

Non-starvation implies deadlock-freedom.

Properties

Conservation: behaviours of architecture instances are refined by the connector.

Definition (Conservation)

An architecture type \mathcal{A}^t is *conservative*, if, for each $\widetilde{\alpha}$ such that $C \xrightarrow{\widetilde{\alpha}}$, there is a configuration F such that $F \xrightarrow{\sharp \widetilde{\alpha}}$ where $\sharp \widetilde{\alpha}$ is the dual sequence of $\widetilde{\alpha}$ w.r.t. $\{?, !\}$.

Completeness: the connector does not exclude behaviours of components.

Definition (Completeness)

 \mathcal{A}^t is complete if the following proposition holds: for each component P and $P' \in Proc(P)$, if $P' \stackrel{\alpha}{\longrightarrow}$, then $(F \times P) \parallel C \stackrel{*}{\longrightarrow} (F' \times P') \parallel C'$ for some F, F', C' such that $C' \stackrel{\sharp \alpha}{\longrightarrow}$.

The Method

The method is to construct a specific architecture instance which can mimic just all behaviours of possible components.

Definition (Construction procedure)

For any given component *P*, we choose a new process identifier X_P . The *iteration* of *P*, denoted by P^* , is obtained by substituting *nil* in *P* by X_P , and the recursive equation for X_P is $X_P \stackrel{\circ}{=} P^*$. A canonical configuration and a canonical architecture instance are respectively defined as

$$F_{c}^{*} = X_{P_{c,1}} \times \ldots \times X_{P_{c,k}} \qquad \mathcal{A}_{c}^{*} = F_{c}^{*} \parallel C$$

where $P_{c,1}, \ldots, P_{c,k}$ enumerate all canonical components of \mathcal{A}^t .

The Method

N.B. The number of canonical components of an architecture type is the number of *possible* components. For example, the number of canonical components of *CStype* is |clt| + |sev|. But the number of possible configurations for *CStype* is $2^{|Clt|+|SeV|}$.

The following lemma says that the iteration of a canonical component's behaviours are just enough to mimic all of its components' behaviours in some sense.

Lemma

• If
$$P \xrightarrow{\widetilde{\alpha}}$$
 and $\mathcal{I}\langle a \rangle \vdash P$, then $\mathcal{I}\langle a \rangle^* \xrightarrow{\widetilde{\alpha}}$;

• If $\mathcal{I}\langle a \rangle^* \xrightarrow{\widetilde{\alpha}}$, then there is P such that $P \xrightarrow{\widetilde{\alpha}}$ and $\mathcal{I}\langle a \rangle \vdash P$.

Deadlock-Freedom

Theorem \mathcal{A}^t is deadlock-free if and only if the depth-first search algorithm on the right returns 'yes'.

Significance

It searches in \mathcal{A}_c^* 's state space but verifies \mathcal{A}^{t} 's property.

Data: \mathcal{A}_{c}^{*} Output: 'yes' or 'no' Let bool = 1foreach $(P_1 \times \ldots \times P_k) \parallel C' \in Proc(\mathcal{A}_c^*)$ do if $P_1 \times \ldots \times P_k = F_c^*$ then if $X_{P_{c,i}} \parallel C' \not\longrightarrow$, $\exists 1 \leq i \leq k$ then bool := 0break else Let $P'_i = P_i \{ \operatorname{nil} / X_{\mathcal{I}_i(\mathbf{a})} \}, \forall 1 \le i \le k$ if $(P'_1 \times \ldots \times P'_k) \parallel C' \not\longrightarrow$ then $\mid bool := 0$ break

if *bool* = 1 then return 'yes' else return 'no'

・ロト・「聞・ 《聞・ 《聞・ 《曰・

Non-Starvation

```
Data: \mathcal{A}_c^*
Output: 'yes' or 'no'
Let bool = 1
foreach (P_1 \times \ldots \times P_k) \parallel C' \in Proc(\mathcal{A}_c^*) do
       Let P'_i = P_i\{\operatorname{nil}/X_{\mathcal{I}_i\langle a \rangle}\}, \forall 1 \le i \le k
       foreach 1 < i < k do
               Let F_i = P'_1 \times \ldots P'_{i-1} \times P'_{i+1} \times \ldots P'_k
               if there are F' and C' such that
                         F_i \parallel C' \stackrel{*}{\longrightarrow} F'_i \parallel C''
                         P_i \parallel C'' \longrightarrow
               then
                       skip
               else
                       bool := 0
                       break
if bool = 1 then return 'yes'
else return 'no'
```

Theorem

 \mathcal{A}^{t} is non-starving if and only if the depth-first search algorithm on the left returns 'yes'.

Significance $\mathcal{A}_{c}^{*} \rightsquigarrow \mathcal{A}^{t}$.

◆ロト ◆御 ▶ ◆臣 ▶ ◆臣 ▶ ● ● ● ● ● ●

Conservation (I)

Definition (Determinism)

An architecture type A^t is *deterministic* if its connector and all of its canonical components are deterministic.

Theorem

Suppose \mathcal{A}^t is deterministic. \mathcal{A}^t is conservative if and only if the depth-first search algorithm on the right returns 'yes'.

Significance

 $\mathcal{A}^*_{c} \rightsquigarrow \mathcal{A}^t.$

Data: \mathcal{A}_{c}^{*} Output: 'yes' or 'no' Let bool = 1foreach $(P_{1} \times ... \times P_{k}) \parallel C' \in Proc(\mathcal{A}_{c}^{*})$ do foreach $\alpha \text{ s.t. } C' \xrightarrow{\alpha} \text{ do}$ if $(P_{1} \times ... \times P_{k}) \not\xrightarrow{\sharp \alpha}$ then bool := 0break if bool = 1 then return 'yes' else return 'no'

(日)

Completeness (I)

Theorem Suppose \mathcal{A}^t is deterministic. \mathcal{A}^t is complete if and only if the algorithm on the right returns 'yes'.

```
Data: \mathcal{A}_{c}^{*}

Output: 'yes' or 'no'

Let bool = 1

foreach P \in Proc(P_{c,i}), 1 \leq i \leq k do

\begin{bmatrix} \text{let } S = \{C' \mid F_{c}^{*} \parallel C \longrightarrow F \parallel C', F[i] = P\} \\ \text{if there exists } \alpha \text{ s.t. } P \xrightarrow{\alpha} and C' \xrightarrow{\#\alpha} for all \\ C' \in S \text{ then} \\ bool := 0 \\ b \text{ treak} \end{bmatrix}

if bool = 1 then return 'yes' else return 'no'
```

Significance

- $\blacktriangleright \ \mathcal{A}^*_{c} \rightsquigarrow \mathcal{A}^t,$
- Compositionality: it checks the canonical components on the one-by-one basis.

Assumptions, Definitions, Theorems

Two further assumptions :

- ► Different canonical components share no actions $(Act(P_{c,i}) \cap Act(P_{c,j}) = \emptyset \text{ if } i \neq j);$
- Actions of components are dual to actions of the connector, and vice versa (U^k_{i=1} Act(P_{c,i}) = { ♯α | α ∈ Act(C) }).

Let $\widetilde{\alpha}|A$ be the projection of $\widetilde{\alpha}$ on $A \subseteq Act$. $Q \xrightarrow{\widetilde{\gamma}}_{A} Q'$ if and only if there is $\widetilde{\alpha}$ such that $Q \xrightarrow{\widetilde{\alpha}} Q'$ and $\widetilde{\gamma} = \widetilde{\alpha}|A$.

Definition

(1) $C \preccurlyeq P_{c,i} \text{ if } C \xrightarrow{\widetilde{\alpha}}_{Act(P_{c,i})} \text{ implies } P_{c,i}^* \xrightarrow{\sharp\widetilde{\alpha}}; (2) C \succcurlyeq P_{c,i} \text{ if } P_{c,i}^* \xrightarrow{\widetilde{\alpha}} \text{ implies } C \xrightarrow{\sharp\widetilde{\alpha}}_{Act(P_{c,i})}.$

Theorem

 \mathcal{A}^t is conservative (resp. complete) if and only if $C \preccurlyeq P_{c,i}$ (resp. $C \succcurlyeq P_{c,i}$) for each canonical component $P_{c,i}$ of \mathcal{A}^t .

Conservation (II)

Theorem With the previous three assumptions, $C \preccurlyeq P_{c,i}$ if and only if the algorithm on the right returns 'yes'.

Significance

- $\blacktriangleright \ \mathcal{A}^*_{\boldsymbol{c}} \rightsquigarrow \mathcal{A}^t,$
- Compositional checking.

Data: C, P_c i Output: 'yes' or 'no' Construct a graph $\mathbf{G} = \langle \mathbf{V}, \mathbf{E} \rangle$ such that $\blacktriangleright \mathbf{V} = Proc(P_{c,i}^*) \times Proc(C)$ $\mathbf{E} = \{ \langle \langle P_1, C_1 \rangle, \langle P_2, C_2 \rangle \rangle \mid P_1 \stackrel{\alpha}{\longrightarrow} P_2,$ $C_1 \xrightarrow{\sharp \alpha}_{Act(P_{c,i})} C_2, \alpha \in Act(P_{c,i})$ Let bool = 1foreach $\langle P, C' \rangle$ reachable from $\langle P_{c,i}^*, C \rangle$ in **G** do if there is γ such that $\triangleright P \xrightarrow{\gamma}$ $\blacktriangleright C' \not\xrightarrow{\sharp \gamma}_{Act(P_{c,i})}$ then bool := 0break if bool = 1 then return 'yes' else return 'no'

Completeness (II)

Data: $C, P_{c,i}$ Output: 'yes' or 'no' Construct a graph $\mathbf{G} = \langle \mathbf{V}, \mathbf{E} \rangle$ as in the previous algorithm Let bool = 1foreach $\langle P, C' \rangle$ reachable from $\langle P_{c,i}^*, C \rangle$ in G do if there is γ such that $\blacktriangleright P \xrightarrow{\gamma}$ $\blacktriangleright C' \xrightarrow{\sharp \gamma} Act(P_{c,i})$ then bool := 0break if bool = 1 then return 'yes' else return 'no'

Theorem

With the previous three assumptions plus the conservation of \mathcal{A}^t , $C \succcurlyeq P_{c,i}$ if and only if the algorithm on the left returns 'yes'.

Significance

- $\blacktriangleright \ \mathcal{A}^*_{\mathbf{C}} \rightsquigarrow \mathcal{A}^t,$
- Finer-grained compositional checking.

Summary

- We propose a semantic model for the dynamic connector-based architecture styles;
- We show that the analysis of several basic properties of these architecture styles depends on architecture instances with fixed configurations, reducing the verification state space.

Outlook: the bridge between our semantic model and a mature ADL?

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>