
Semantic Analysis of Dynamic Connector
Based Architecture Styles

Guoxin Su Mingsheng Ying Chengqi Zhang

Faculty of Engineering and Information Technology
University of Technology, Sydney

WICSA/ECSA 2012

Outline

Background: where our problem locates

Problem: a motivating example and behavioural properties

Model: formalisation of architectural concepts and properties

Analysis: algorithms for checking desired properties

Background

◮ Dynamism of connector-based architectural styles:
insertion and removal of components

◮ Type- vs instance-level descriptions and component
instantiation: parameterisation or semantic conformance

◮ Behavioural modeling

C1 C2 C1 C2 C7

C3 C4 ⇒ C3

C5 C6 C6 C8

Background

◮ Dynamism of connector-based architectural styles:
insertion and removal of components

◮ Type- vs instance-level descriptions and component
instantiation: parameterisation or semantic conformance

◮ Behavioural modeling

C1 C2 C1 C2 C7

C3 C4 ⇒ C3

C5 C6 C6 C8

Background

◮ Dynamism of connector-based architectural styles:
insertion and removal of components

◮ Type- vs instance-level descriptions and component
instantiation: parameterisation or semantic conformance

◮ Behavioural modeling

Syntax of textual specification:

if state = x then

if pre-conditions then

input/output and effects [and state := y]

A Client-Server System

◮ The system is connector-based
◮ A structural veiw and a scenario:

◮ Components can join in and disconnect to the system
dynamically

A Client-Server System

Type-level specification

Component type CLIENT(c : clt, s : sev):

if state = 0 then
〈request, c, s〉! and state := 1

if state = 1 then
if true then
〈result, c, s〉? and state := 2

if true then
〈error, c, s〉? and state := 2

0

request!

1

result? error?

2

A Client-Server System

Component type SERVER(s : sev):

if state = 0 then
〈register, s〉! and state := 1

if state = 1 then
if true then
〈involve, x : clt〉? and
enqueue(x ,Que)

if empty(Que) = ‘n’ then
let y = head(Que) and
〈return, y〉! and dequeue(Que)

if empty(Que) = ‘y’ then
〈unregister, s〉! and state := 2

0

register!

1involve? return!

unregister!

2

A Client-Server System

Connector CSCON:

if state1 = 0 then
〈request, x : clt, y : sev〉?

if state1 = 1 then
if y ∈ RegSev then
〈involve, x, y〉! and state1 := 0

else 〈error, x, y〉! and state1 := 0
if state2 = 0 then
〈return, z : clt,w : sev〉? and state2 := 1

if state2 = 1 then
〈result, z,w〉! and state2 := 0

if state3 = 0 then
if true then
〈register, v : sev〉? and
RegSev := RegSev ∪ {v}

if true then
〈unregister, u : sev〉? and
RegSev := RegSev\{u}

0
request?

1

involve!

error!

0
return?

1
result!

0 registerunregister

A Client-Server System

Instance-level specification

Component instance Client1 of CLIENT:

if state = 1 then
〈request, c1, s1〉! and state := 2

if state = 2 then
if true then
〈result, c1, s1〉? and state := 1

if true then
〈error, c1, s1〉? and state := 1

0
request!

1

result?

error?

A Client-Server System

Component instance Client2 of CLIENT:

if state = 0 then
〈request, c2, s1〉? and state := 1

if state = 1 then
if true then

〈result, c2, s1〉? and state := 4
if true then

〈error, c2, s1〉? and state := 2
if state = 2 then

choose any ∈ sev and
〈request, c2, any〉! and state := 3

if state = 3 then
if true then

〈result, clt2, any〉? and state := 4
if true then

〈error, clt2, any〉? and state := 4

0

request

1

result

error
2

request

4 3
result

error

A Client-Server System

Component instance Server1 of SERVER:

if state = 0 then
if upgrade = ‘done’ then
〈register, s1〉! and state := 1

if state = 1 then
if empty(Que) = ‘y’ and

upgrade = ‘ready’ then
〈unregister, s1〉! and
state := 0

if true then
〈involve, x : clt〉? and
enqueue(x ,Que)

if empty(Que) = ‘n’ then
let y = head(Que) and
〈return, y〉! and dequeue(Que)

0

register

1

involve

return

unregister

Problems

Basic properties for the client-server system:

◮ Whether the system is deadlock-free?
◮ Whether each component, if not terminated, will be

deprived of the right to interact with the connector?
◮ Whether CSCON restricts the system’s behaviours?
◮ Whether behaviours of each component, if given a suitable

configuration, are realisable?

• Can we know the answers to the above questions without
exhausting all possibility of runtime system configurations?

• A pitfall: the semantic variances between component types
and instances

Problems

Basic properties for the client-server system:

◮ Whether the system is deadlock-free?
◮ Whether each component, if not terminated, will be

deprived of the right to interact with the connector?
◮ Whether CSCON restricts the system’s behaviours?
◮ Whether behaviours of each component, if given a suitable

configuration, are realisable?

• Can we know the answers to the above questions without
exhausting all possibility of runtime system configurations?

• A pitfall: the semantic variances between component types
and instances

Process Algebra

Syntax: N a set of names, ai ∈ N .

λ ::= 〈a1, . . . , ak 〉 messages

α, β, γ ::= λ? | λ! | τ actions

P,Q ::= X | nil | P × Q | P ‖Q processes

M,M ′ ::= M + M ′ | λ?.P | λ!.P

Operation semantics:

−

α.P α
−→ P

P α
−→ P′ X ⊜ M

X α
−→ P′

P
α

−→ P′

P + Q α
−→ P′

P
α

−→ P′

P × Q α
−→ P′ × Q

P τ
−→ P′

P ‖Q τ
−→ P′ ‖Q

P λ!
−→ P′ Q λ?

−→ Q′

P ‖Q τ
−→ P′ ‖Q′

where M is ‘ ‖ ’- and ‘×’-free.

◮ From behavioural specification to PA processes
◮ CSCON,CLIENT,SERVER, client1, ect. as PA processes

∗Recursive equations for Server1

(1) if Que = ǫ and update = ‘ready’, then

X [2, ǫ] ⊜
∑

a∈clt
〈involve, a〉?. X [3, a] + 〈unregister, s〉!. X [3, ǫ]

(2) if Que 6= ǫ, then

X [2,Que] ⊜
∑

a∈clt
〈involve, a〉?. X [2,Quea] + 〈return, c〉!. X [2,Que’]

where Quea = enqueue(a,Que) such that a ∈ clt, c = head(Que), and
Que’ = dequeue(Que).

Main Concepts

An informal glimpse

◮ an architecture type = component types + a connector
◮ an architecture (instance) = components + a connector

Definition (Components, connectors, component types)
Components are ‘‖’-free processes and connectors are ‘‖’- and
‘×’-free processes. Component types are ‘‖’-free abstract
processes of the form

I = Q(x1 : A1, . . . , xm : Am)

where (1) Ai ⊆ N (1 ≤ i ≤ m) are name spaces, and (2) xi

(1 ≤ i ≤ m) are formal parameters of I with x1 being a
distinguished one (which, informally specking, is reserved for
the name of an instance of I).

Main Concepts

An informal glimpse

◮ an architecture type = component types + a connector
◮ an architecture (instance) = components + a connector

Definition (Components, connectors, component types)
Components are ‘‖’-free processes and connectors are ‘‖’- and
‘×’-free processes. Component types are ‘‖’-free abstract
processes of the form

I = Q(x1 : A1, . . . , xm : Am)

where (1) Ai ⊆ N (1 ≤ i ≤ m) are name spaces, and (2) xi

(1 ≤ i ≤ m) are formal parameters of I with x1 being a
distinguished one (which, informally specking, is reserved for
the name of an instance of I).

Main Concepts

Definition (Architecture types and instances)
A (dynamic, connector-based) architecture type is represented
as the tuple

At = 〈I1, . . . ,In,C〉

An architecture instance of At is the tuple

A = 〈P1
1 , . . .P

m1
1 , . . . ,Pmn

n ,C〉

where P j
i conforms to Ii .

Example

CStype = 〈CLIENT,SERVER,CSCON 〉

CSsystem = 〈Client1,Client2, . . . ,Server1, . . . ,CSCON 〉

Main Concepts

Definition (Canonical components)
If a ∈ A1, we call

I〈a〉 =
∑

a2∈A2,...,a2∈Am

Q〈a,a2, . . . am〉

a canonical component of I.

Definition (Component conformance)
P conforms to I〈a〉, denoted I〈a〉 ⊢ P, if there is
R ⊆ Proc × Proc such that 〈I〈a〉,P〉 ∈ R and for each
〈P1,P2〉 ∈ R:
◮ if P1 = nil then 〈I〈a〉,P2〉 ∈ R or P2 = nil ;
◮ if P1

α
−→ P ′

1 and P1 6= I〈a〉 and P2
α

−→ P ′
2 and 〈P ′

1,P
′
2〉 ∈ R

for some P ′
2;

◮ if P2
α

−→ P ′
2 then P1

α
−→ P ′

1 and 〈P ′
1,P

′
2〉 ∈ R for some P ′

1.

Main Concepts

Theorem (Properties of ⊢)

1. I〈a〉 ⊢ I〈a〉,

2. I〈a〉 ⊢ P1 & I〈a〉 ⊢ P2 ⇒ I〈a〉 ⊢ P1 + P2,

3. I〈a〉 ⊢ P1 & P1 ≃ P2 ⇒ I〈a〉 ⊢ P2,

4. I〈a〉 ⊢ P ⇒ I〈a〉 ⊢ P∗,

5. ⊢ is decidable.

Example

CLIENT〈c1 : clt〉 ⊢ Client1
CLIENT〈c2 : clt〉 ⊢ Client2
SERVER〈s1 : sev〉 ⊢ Server1

Main Concepts

Definition (Component configurations)
A component configuration of At is a process of the form

F = P1〈a1〉 × . . .× Pn〈an〉

such that, for each 1 ≤ i 6= j ≤ n, ai 6= aj and Ii〈ai〉 ⊢ Pi for
some interface Ii of At .

Definition (Architectures revisited)
The semantics of an architecture A can be considered as the
process F ‖C.

Example

CSsystem = (client1 × client2 × . . .× server1 × . . .) ‖CSCON

Properties

Definition (Deadlock-freedom)
(1) An architecture instance A = F ‖C is deadlock-free, if the
following proposition holds: if A ∗

−→ F ′ ‖C′ and F ′ −→, then
F ′ ‖C′ −→. (2) An architecture type At is deadlock-free if each
instance of At is deadlock-free.

Definition (Non-starvation)
A = (F × P) ‖C is non-starving, if the following holds: if
A

∗
−→ (F ′ × P ′) ‖C′ and P ′ −→, then there are F ′′ and C′′ such

that F ′ ‖C′ ∗
−→ F ′′ ‖C′′ and P ′ ‖C′′ −→. (2) An architecture

type At is non-starving if each instance of At is non-starving.

Lemma
Non-starvation implies deadlock-freedom.

Properties

Conservation: behaviours of architecture instances are refined
by the connector.

Definition (Conservation)
An architecture type At is conservative, if, for each α̃ such that

C α̃
−→, there is a configuration F such that F

♯α̃
−→ where ♯α̃ is

the dual sequence of α̃ w.r.t. {?, !}.

Completeness: the connector does not exclude behaviours of
components.

Definition (Completeness)
At is complete if the following proposition holds: for each
component P and P ′ ∈ Proc(P), if P ′ α

−→, then
(F × P) ‖ C ∗

−→ (F ′ × P ′) ‖ C′ for some F ,F ′,C′ such that

C′ ♯α
−→.

The Method

The method is to construct a specific architecture instance
which can mimic just all behaviours of possible components.

Definition (Construction procedure)
For any given component P, we choose a new process
identifier XP . The iteration of P, denoted by P∗, is obtained by
substituting nil in P by XP , and the recursive equation for XP is
XP ⊜ P∗. A canonical configuration and a canonical
architecture instance are respectively defined as

F ∗
c = XPc,1

× . . .× XPc,k
A∗

c = F ∗
c ‖C

where Pc,1, . . . ,Pc,k enumerate all canonical components of At .

The Method

N.B. The number of canonical components of an architecture
type is the number of possible components. For example, the
number of canonical components of CStype is |clt|+ |sev|. But
the number of possible configurations for CStype is 2|clt|+|sev|.

The following lemma says that the iteration of a canonical
component’s behaviours are just enough to mimic all of its
components’ behaviours in some sense.

Lemma

◮ If P α̃
−→ and I〈a〉 ⊢ P, then I〈a〉∗ α̃

−→;

◮ If I〈a〉∗ α̃
−→, then there is P such that P α̃

−→ and I〈a〉 ⊢ P.

Deadlock-Freedom

Theorem
At is deadlock-free if
and only if the
depth-first search
algorithm on the right
returns ‘yes’.

Significance
It searches in A∗

c ’s
state space but
verifies At ’s property.

Data: A∗
c

Output : ‘yes’ or ‘no’

Let bool = 1
foreach (P1 × . . .× Pk) ‖C′ ∈ Proc(A∗

c) do
if P1 × . . .× Pk = F∗

c then
if XPc,i

‖C′ 6−→, ∃1 ≤ i ≤ k then
bool := 0
break

else
Let P′

i = Pi{nil/XIi 〈a〉}, ∀ 1 ≤ i ≤ k
if (P′

1 × . . .× P′
k) ‖C′ 6−→ then

bool := 0
break

if bool = 1 then return ‘yes’
else return ‘no’

Non-Starvation

Data: A∗
c

Output : ‘yes’ or ‘no’

Let bool = 1
foreach (P1 × . . .× Pk) ‖C′ ∈ Proc(A∗

c) do
Let P′

i = Pi{nil/XIi 〈a〉}, ∀ 1 ≤ i ≤ k
foreach 1 ≤ i ≤ k do

Let Fi = P′
1 × . . .P′

i−1 ×P′
i+1 × . . .P′

k
if there are F ′

i and C′′ such that

Fi ‖C′ ∗
−→ F ′

i ‖C′′

Pi ‖C′′ −→
then

skip
else

bool := 0
break

if bool = 1 then return ‘yes’
else return ‘no’

Theorem
At is non-starving if
and only if the
depth-first search
algorithm on the left
returns ‘yes’.

Significance
A∗

c At .

Conservation (I)

Definition (Determinism)
An architecture type At is deterministic if its connector and all
of its canonical components are deterministic.

Theorem
Suppose At is
deterministic. At is
conservative if and only if
the depth-first search
algorithm on the right
returns ‘yes’.

Significance
A∗

c At .

Data: A∗
c

Output : ‘yes’ or ‘no’

Let bool = 1
foreach (P1 × . . .× Pk) ‖C′ ∈ Proc(A∗

c)
do

foreach α s.t. C′ α
−→ do

if (P1 × . . .× Pk) 6
♯α
−→ then

bool := 0
break

if bool = 1 then return ‘yes’
else return ‘no’

Completeness (I)

Theorem
Suppose At is
deterministic. At

is complete if and
only if the
algorithm on the
right returns
‘yes’.

Data: A∗
c

Output : ‘yes’ or ‘no’

Let bool = 1
foreach P ∈ Proc(Pc,i), 1 ≤ i ≤ k do

let S = {C′ | F∗
c ‖C

∗
−→ F ‖C′, F [i] = P}

if there exists α s.t. P
α

−→ and C′ 6
♯α
−→ for all

C′ ∈ S then
bool := 0
break

if bool = 1 then return ‘yes’
else return ‘no’

Significance

◮ A∗
c At ,

◮ Compositionality: it checks the canonical components on
the one-by-one basis.

Assumptions, Definitions, Theorems

Two further assumptions :
◮ Different canonical components share no actions

(Act(Pc,i) ∩ Act(Pc,j) = ∅ if i 6= j);
◮ Actions of components are dual to actions of the connector,

and vice versa (
⋃k

i=1 Act(Pc,i) = {♯α | α ∈ Act(C)}).

Let α̃|A be the projection of α̃ on A ⊆ Act . Q
γ̃

−→A Q′ if and

only if there is α̃ such that Q α̃
−→ Q′ and γ̃ = α̃|A.

Definition
(1) C 4 Pc,i if C α̃

−→Act(Pc,i) implies P∗
c,i

♯α̃
−→; (2) C < Pc,i if

P∗
c,i

α̃
−→ implies C

♯α̃
−→Act(Pc,i).

Theorem
At is conservative (resp. complete) if and only if C 4 Pc,i

(resp. C < Pc,i) for each canonical component Pc,i of At .

Conservation (II)

Theorem
With the previous
three assumptions,
C 4 Pc,i if and only
if the algorithm on
the right returns
‘yes’.

Significance
◮ A∗

c At ,
◮ Compositional

checking.

Data: C,Pc,i
Output : ‘yes’ or ‘no’

Construct a graph G = 〈V,E〉 such that
◮ V = Proc(P∗

c,i)× Proc(C)

◮ E = {〈〈P1,C1〉, 〈P2,C2〉〉 | P1
α

−→ P2,

C1
♯α
−→Act(Pc,i)

C2, α ∈ Act(Pc,i)}

Let bool = 1
foreach 〈P,C′〉 reachable from 〈P∗

c,i ,C〉 in G do
if there is γ such that

◮ P
γ

−→

◮ C′ 6
♯γ
−→Act(Pc,i)

then
bool := 0
break

if bool = 1 then return ‘yes’
else return ‘no’

Completeness (II)

Data: C,Pc,i
Output : ‘yes’ or ‘no’

Construct a graph G = 〈V,E〉 as in the
previous algorithm
Let bool = 1
foreach 〈P,C′〉 reachable from 〈P∗

c,i ,C〉

in G do
if there is γ such that

◮ P 6
γ

−→

◮ C′ ♯γ
−→Act(Pc,i)

then
bool := 0
break

if bool = 1 then return ‘yes’
else return ‘no’

Theorem
With the previous three
assumptions plus the
conservation of At ,
C < Pc,i if and only if the
algorithm on the left
returns ‘yes’.

Significance
◮ A∗

c At ,
◮ Finer-grained

compositional
checking.

Summary

◮ We propose a semantic model for the dynamic
connector-based architecture styles;

◮ We show that the analysis of several basic properties of
these architecture styles depends on architecture
instances with fixed configurations, reducing the
verification state space.

Outlook: the bridge between our semantic model and a mature
ADL?

	Background: where our problem locates
	Problem: a motivating example and behavioural properties
	Model: formalisation of architectural concepts and properties
	Analysis: algorithms for checking desired properties

