Semantic Analysis of Dynamic Connector Based Architecture Styles

Guoxin Su Mingsheng Ying Chengqi Zhang

Faculty of Engineering and Information Technology University of Technology, Sydney

WICSA/ECSA 2012

KORKARYKERKE PORCH

Outline

[Background: where our problem locates](#page-2-0)

[Problem: a motivating example and behavioural properties](#page-5-0)

[Model: formalisation of architectural concepts and properties](#page-14-0)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © Q Q @

[Analysis: algorithms for checking desired properties](#page-24-0)

Background

▶ Dynamism of connector-based architectural styles: insertion and removal of components

- ► Type- vs instance-level descriptions and component instantiation: parameterisation or semantic conformance
- \blacktriangleright Behavioural modeling

Background

- ▶ Dynamism of connector-based architectural styles: insertion and removal of components
- ▶ Type- vs instance-level descriptions and component instantiation: parameterisation or semantic conformance
- \blacktriangleright Behavioural modeling

Background

- ► Dynamism of connector-based architectural styles: insertion and removal of components
- ► Type- vs instance-level descriptions and component instantiation: parameterisation or semantic conformance
- \blacktriangleright Behavioural modeling

Syntax of textual specification:

if state $=$ x **then**

if pre-conditions **then**

input/output **and** effects [and state $:= y$]

KORK ERREADEMENT

- ► The system is connector-based
- \triangleright A structural veiw and a scenario:

 \triangleright Components can join in and disconnect to the system dynamically

YO A GREET YEAR ON YOUR

Type-level specification

```
Component type CLIENT(c : clt, s : sev):
```

```
if state = 0 then
   \langle \text{request}, c, s \rangle! and state := 1
if state = 1 then
   if true then
      \langle \text{result}, c, s \rangle? and state := 2
   if true then
      \langle error, c, s\rangle? and state := 2
```


Component type SERVER(s : sev):

```
if state = 0 then
   \langle register, s)! and state := 1
if state = 1 then
  if true then
     \langleinvolve, x : clt\rangle? and
     enqueue(x, Que)if empty(Que) = 'n' then
     let y = head( Que) and
     \langlereturn, v \rangle! and dequeue(Que)
  if empty(Que) = 'y' then
     \langleunregister, s\rangle! and state := 2
```


Connector CSCON:

```
if state<sub>1</sub> = 0 then
   \langle request, x : \mathit{clt}, y : \mathit{sev} \rangle?if state<sub>1</sub> = 1 then
   if y ∈ RegSev then
       \langleinvolve, x, y)! and state<sub>1</sub> := 0
   else \langle error, x, y\rangle! and state<sub>1</sub> := 0
if state<sub>2</sub> = 0 then
   \langle return, z : clt, w : sev)? and state<sub>2</sub> := 1
if state<sub>2</sub> = 1 then
   \langle result, z, w \rangle! and state<sub>2</sub> := 0
if state<sub>3</sub> = 0 then
   if true then
       \langle register, v : \text{sev} \rangle? and
       RegSev := RegSev \cup \{v\}if true then
       \langleunregister, u : sev\rangle? and
       RegSev := RegSev\{u}
```


Instance-level specification

Component instance $Client_1$ of $CLIENT$:

```
if state = 1 then
   \langle request, c_1, s_1<sup>\rangle</sup>! and state := 2
if state = 2 then
   if true then
       \langle result, c<sub>1</sub>, s<sub>1</sub>)? and state := 1
   if true then
       \langle error, c_1, s_1\rangle? and state := 1
```


KORKARYKERKE PORCH

Component instance Client₂ of CLIENT:

```
if state = 0 then
   \langle request, c_2, s_1\rangle? and state := 1
if state = 1 then
   if true then
      \langle result, c_2, s_1 \rangle? and state := 4
   if true then
      \langle error, c_2, s_1\rangle? and state := 2
if state = 2 then
   choose any ∈ sev and
   \langle request, c_2, any\rangle! and state := 3
if state = 3 then
   if true then
      \langle result, clt<sub>2</sub>, any\rangle? and state := 4
   if true then
      \langle error, clt<sub>2</sub>, any)? and state := 4
```


Component instance $Server_1$ of $SERVER$:

```
if state = 0 then
  if upgrade = 'done' then
      \langle register, s_1<sup>\rangle</sup>! and state := 1
if state = 1 then
  if empty(Que) = 'y' and
     upgrade = 'ready' then
      \langleunregister, s_1<sup>\rangle</sup>! and
     state = 0if true then
      \langleinvolve, x : clt\rangle? and
     enqueue(x, Que)if empty(Que) = 'n' then
     let y = head (Que) and
      \langle return, y \rangle! and dequeue(Que)
```


Problems

Basic properties for the client-server system:

- \triangleright Whether the system is deadlock-free?
- \triangleright Whether each component, if not terminated, will be deprived of the right to interact with the connector?
- ▶ Whether CSCON restricts the system's behaviours?
- \triangleright Whether behaviours of each component, if given a suitable configuration, are realisable?
- Can we know the answers to the above questions without exhausting all possibility of runtime system configurations?
- A pitfall: the semantic variances between component types and instances

Problems

Basic properties for the client-server system:

- \triangleright Whether the system is deadlock-free?
- \triangleright Whether each component, if not terminated, will be deprived of the right to interact with the connector?
- ▶ Whether CSCON restricts the system's behaviours?
- \triangleright Whether behaviours of each component, if given a suitable configuration, are realisable?
- Can we know the answers to the above questions without exhausting all possibility of runtime system configurations?
- A pitfall: the semantic variances between component types and instances

Process Algebra

Syntax: N a set of names, $a_i \in \mathcal{N}$.

$$
\lambda ::= \langle a_1, \dots, a_k \rangle \qquad \text{messages} \\ \alpha, \beta, \gamma ::= \lambda? \mid \lambda! \mid \tau \qquad \text{actions} \\ P, Q ::= X \mid \text{nil} \mid P \times Q \mid P \parallel Q \qquad \text{processes} \\ M, M' ::= M + M' \mid \lambda? \cdot P \mid \lambda! \cdot P
$$

Operation semantics:

$$
\frac{\begin{array}{c|c}\n\hline\n-\end{array}}{a.P \xrightarrow{\alpha} P} \quad \frac{P \xrightarrow{\alpha} P' \quad X \xrightarrow{\alpha} M}{X \xrightarrow{\alpha} P'}
$$
\n
$$
\frac{P \xrightarrow{\alpha} P'}{P + Q \xrightarrow{\alpha} P'} \quad \frac{P \xrightarrow{\alpha} P'}{P \times Q \xrightarrow{\alpha} P' \times Q}
$$
\n
$$
\frac{P \xrightarrow{\tau} P'}{P \parallel Q \xrightarrow{\tau} P' \parallel Q} \quad \frac{P \xrightarrow{\lambda!} P' \quad Q \xrightarrow{\lambda?} Q'}{P \parallel Q \xrightarrow{\tau} P' \parallel Q'}
$$

where M is ' \parallel '- and ' \times '-free.

- ► From behavioural specification to PA processes
- ► CSCON, CLIENT, SERVER, client₁, ect. as PA processes

[∗]Recursive equations for Server¹

(1) if Que $=\epsilon$ and update $=$ 'ready', then

$$
X[2,\epsilon] \triangleq \sum_{a \in \textit{Clt}} \langle \textit{involve}, a \rangle ? . \ X[3,a] + \langle \textit{unregister}, s \rangle ! . \ X[3,\epsilon]
$$

(2) if Que $\neq \epsilon$, then

$$
X[2, Que] \triangleq \sum_{a \in \textit{Clt}} \langle \textit{involve}, a \rangle ?. X[2, Que_a] + \langle \textit{return}, c \rangle !. X[2, Que]
$$

KORKARYKERKE PORCH

where Que_a = enqueue(a, Que) such that $a \in \text{clt}$, c = head(Que), and $Que' = dequeue(Que)$.

An informal glimpse

- ighthrow an architecture type $=$ component types + a connector
- \triangleright an architecture (instance) = components + a connector

Definition (Components, connectors, component types) Components are '||'-free processes and connectors are '||'- and \mathbf{x}' -free processes. Component types are '||'-free abstract processes of the form

$$
\mathcal{I} = \mathsf{Q}(x_1 : A_1, \ldots, x_m : A_m)
$$

where (1) $A_i \subseteq \mathcal{N}$ (1 $\leq i \leq m$) are name spaces, and (2) x_i $(1 < i < m)$ are formal parameters of $\mathcal I$ with x_1 being a distinguished one (which, informally specking, is reserved for the name of an instance of \mathcal{I}).

An informal glimpse

- ighthrow an architecture type $=$ component types + a connector
- an architecture (instance) $=$ components + a connector

Definition (Components, connectors, component types) Components are '||'-free processes and connectors are '||'- and $\forall x'$ -free processes. Component types are '||'-free abstract processes of the form

$$
\mathcal{I} = \mathsf{Q}(x_1 : A_1, \ldots, x_m : A_m)
$$

where (1) $A_i \subseteq \mathcal{N}$ (1 $\leq i \leq m$) are name spaces, and (2) x_i $(1 < i < m)$ are formal parameters of $\mathcal I$ with x_1 being a distinguished one (which, informally specking, is reserved for the name of an instance of \mathcal{I}).

Definition (Architecture types and instances)

A (dynamic, connector-based) architecture type is represented as the tuple

$$
\mathcal{A}^t = \langle \mathcal{I}_1, \ldots, \mathcal{I}_n, C \rangle
$$

An *architecture instance* of \mathcal{A}^t is the tuple

$$
\mathcal{A} = \langle P_1^1, \ldots P_1^{m_1}, \ldots, P_n^{m_n}, C \rangle
$$

where P_i^j \mathcal{I}_i conforms to \mathcal{I}_i .

Example

 $CStype = \langle CLIENT, SERVER, CSCON \rangle$ CS system $= \langle \mathsf{Client}_1, \mathsf{Client}_2, \ldots, \mathsf{Server}_1, \ldots, \mathsf{CSCON} \rangle$

Definition (Canonical components) If $a \in A_1$, we call

$$
\mathcal{I}\langle \textit{\textbf{a}} \rangle = \sum_{\textit{\textbf{a}}_2 \in A_2, \ldots, \textit{\textbf{a}}_2 \in A_m} Q \langle \textit{\textbf{a}}, \textit{\textbf{a}}_2, \ldots \textit{\textbf{a}}_m \rangle
$$

a canonical component of I .

Definition (Component conformance)

P conforms to $\mathcal{I}\langle a\rangle$, denoted $\mathcal{I}\langle a\rangle \vdash P$, if there is $R \subseteq$ Proc \times Proc such that $\langle \mathcal{I} \langle a \rangle, P \rangle \in R$ and for each $\langle P_1,P_2\rangle \in R$:

- if $P_1 = \text{nil}$ then $\langle \mathcal{I} \langle a \rangle, P_2 \rangle \in R$ or $P_2 = \text{nil}$;
- ► if $P_1 \stackrel{\alpha}{\longrightarrow} P_1'$ and $P_1 \neq \mathcal{I}\langle a \rangle$ and $P_2 \stackrel{\alpha}{\longrightarrow} P_2'$ and $\langle P_1',P_2' \rangle \in R$ for some P'_2 ;
- ► if $P_2 \stackrel{\alpha}{\longrightarrow} P'_2$ then $P_1 \stackrel{\alpha}{\longrightarrow} P'_1$ and $\langle P'_1, P'_2 \rangle \in R$ for some P'_1 .

K ロ X x 4D X X B X X B X 2 B X 9 Q Q Q

K ロ > K 個 > K 重 > K 重 > 「重 → の Q Q →

Theorem (Properties of ⊢)

1.
$$
\mathcal{I}\langle a \rangle \vdash \mathcal{I}\langle a \rangle
$$
,
\n2. $\mathcal{I}\langle a \rangle \vdash P_1 \& \mathcal{I}\langle a \rangle \vdash P_2 \Rightarrow \mathcal{I}\langle a \rangle \vdash P_1 + P_2$,
\n3. $\mathcal{I}\langle a \rangle \vdash P_1 \& \mathcal{P}_1 \simeq P_2 \Rightarrow \mathcal{I}\langle a \rangle \vdash P_2$,
\n4. $\mathcal{I}\langle a \rangle \vdash P \Rightarrow \mathcal{I}\langle a \rangle \vdash P^*$,
\n5. \vdash is decidable.

Example

 $CLIENT\langle c_1 : \textit{clt} \rangle \vdash \textit{Client}_1$ $CLIENT\langle c_2 : \textit{clt} \rangle \vdash \textit{Client}_2$ $SERVER\langle s_1 : sev \rangle \vdash Server_1$

Definition (Component configurations)

A *component configuration* of \mathcal{A}^t is a process of the form

$$
F = P_1 \langle a_1 \rangle \times \ldots \times P_n \langle a_n \rangle
$$

such that, for each 1 \leq $i\neq j$ \leq n , $\bm{a}_i\neq \bm{a}_j$ and $\mathcal{I}_i\langle \bm{a}_i\rangle\vdash P_i$ for some interface \mathcal{I}_i of \mathcal{A}^t .

Definition (Architectures revisited)

The semantics of an architecture A can be considered as the process $F \parallel C$.

Example

 $\text{CSSystem} = (\text{client}_1 \times \text{client}_2 \times \ldots \times \text{server}_1 \times \ldots)$ CSCON

KORKARYKERKE PORCH

Properties

Definition (Deadlock-freedom)

(1) An architecture instance $A = F \parallel C$ is deadlock-free, if the following proposition holds: if $\mathcal{A} \overset{*}{\longrightarrow} F' \, \| \, C'$ and $F' \longrightarrow$, then $\mathsf{F}' \mathbin\Vert \mathsf{C}' \longrightarrow$. (2) An architecture type \mathcal{A}^t is deadlock-free if each instance of \mathcal{A}^t is deadlock-free.

Definition (Non-starvation)

 $\mathcal{A} = (F \times P)$ C is non-starving, if the following holds: if $\mathcal{A}\stackrel{*}{\longrightarrow} (F'\times P')\,\|\, C'$ and $P'\longrightarrow$, then there are F'' and C'' such that $\mathsf F'\, \| \, \mathsf C' \stackrel{*}{\longrightarrow} \mathsf F''\, \| \, \mathsf C''$ and $\mathsf P'\, \| \, \mathsf C'' \longrightarrow$. (2) An architecture type \mathcal{A}^t is non-starving if each instance of \mathcal{A}^t is non-starving.

Lemma

Non-starvation implies deadlock-freedom.

Properties

Conservation: behaviours of architecture instances are refined by the connector.

Definition (Conservation)

An architecture type \mathcal{A}^t is *conservative*, if, for each $\widetilde{\alpha}$ such that $C \stackrel{\widetilde{\alpha}}{\longrightarrow}$, there is a configuration F such that $F \stackrel{\sharp \widetilde{\alpha}}{\longrightarrow}$ where $\sharp \widetilde{\alpha}$ is the dual sequence of $\tilde{\alpha}$ w.r.t. $\{?, !\}$.

Completeness: the connector does not exclude behaviours of components.

Definition (Completeness)

 \mathcal{A}^t is complete if the following proposition holds: for each component P and $P' \in \text{Proc}(P)$, if $P' \stackrel{\alpha}{\longrightarrow}$, then $(F \times P) \parallel C \stackrel{*}{\longrightarrow} (F' \times P') \parallel C'$ for some F, F', C' such that $C' \xrightarrow{\sharp\alpha}$.

The Method

The method is to construct a specific architecture instance which can mimic just all behaviours of possible components.

Definition (Construction procedure)

For any given component P, we choose a new process identifier X_P . The *iteration* of P, denoted by P^* , is obtained by substituting *nil* in P by X_P , and the recursive equation for X_P is $X_P \stackrel{\circ}{=} P^*$. A canonical configuration and a canonical architecture instance are respectively defined as

$$
\digamma^*_c = X_{P_{c,1}} \times \ldots \times X_{P_{c,k}} \qquad \mathcal{A}^*_c = \digamma^*_c \parallel C
$$

where $P_{c,1},\ldots,P_{c,k}$ enumerate all canonical components of $\mathcal{A}^{t}.$

K ロ ▶ K @ ▶ K 할 X K 할 X - 할 X - 9 Q Q ^

The Method

N.B. The number of canonical components of an architecture type is the number of possible components. For example, the number of canonical components of CStype is $|clt| + |sev|$. But the number of possible configurations for C Stype is 2 $|cl$ t $|+|$ se<code>vl</code>.

The following lemma says that the iteration of a canonical component's behaviours are just enough to mimic all of its components' behaviours in some sense.

Lemma

• If
$$
P \xrightarrow{\tilde{\alpha}}
$$
 and $\mathcal{I}\langle a \rangle \vdash P$, then $\mathcal{I}\langle a \rangle^* \xrightarrow{\tilde{\alpha}}$;

► If $\mathcal{I}\langle a \rangle^* \stackrel{\widetilde{\alpha}}{\longrightarrow}$, then there is P such that P $\stackrel{\widetilde{\alpha}}{\longrightarrow}$ and $\mathcal{I}\langle a \rangle \vdash P$.

LED KAR LED LED EL VOLO

Deadlock-Freedom

Theorem

 \mathcal{A}^t is deadlock-free if and only if the depth-first search algorithm on the right returns 'yes'.

Significance

It searches in \mathcal{A}_c^* 's state space but verifies \mathcal{A}^{t} 's property.

Data: \mathcal{A}_{c}^{*} **Output**: 'yes' or 'no' Let bool $= 1$ $\textbf{foreach}~(P_1 \times \ldots \times P_k) \parallel C' \in \textit{Proc}(\mathcal{A}_{\mathcal{C}}^*)$ do **if** $P_1 \times \ldots \times P_k = F_c^*$ **then** $\textbf{if} \; X_{P_{c,i}} \; \| \; C' \mathop{\longrightarrow} , \; \exists 1 \leq i \leq k \; \textbf{then}$ b ool $= 0$ **break else** Let $P'_i = P_i \{\mathsf{nil}/X_{\mathcal{I}_i \langle \mathsf{a} \rangle}\}$, $\forall \, 1 \leq i \leq k$ **if** $(P'_1 \times \ldots \times P'_k) \parallel C' \not\longrightarrow$ **then** $bool := 0$ **break**

if $bool = 1$ **then return** 'yes' **else return** 'no'

Non-Starvation

Data: A[∗] c **Output**: 'yes' or 'no' Let bool $= 1$ $\textbf{foreach}~(P_1 \times \ldots \times P_k) \parallel C' \in \textit{Proc}(\mathcal{A}_{\mathcal{C}}^{*})$ do Let $P'_i = P_i\{\mathsf{nil}/X_{\mathcal{I}_i\langle \mathsf{a} \rangle}\}, \forall \, 1 \leq i \leq k$ **foreach** 1 ≤ i ≤ k **do** Let $F_i = P'_1 \times \ldots P'_{i-1} \times P'_{i+1} \times \ldots P'_k$ **if** there are F'_i and C'' such that $F_i \parallel C' \stackrel{*}{\longrightarrow} F'_i \parallel C''$ $P_i \, \| \, C^{\prime \prime} \longrightarrow$ **then skip else** $bool := 0$ **break if** $bool = 1$ **then return** 'yes' **else return** 'no'

Theorem

 \mathcal{A}^t is non-starving if and only if the depth-first search algorithm on the left returns 'yes'.

KORK E KERKERKERKER

Significance $\mathcal{A}_{\texttt{C}}^{\ast} \rightsquigarrow \mathcal{A}^{t}.$

Conservation (I)

Definition (Determinism)

An architecture type \mathcal{A}^t is *deterministic* if its connector and all of its canonical components are deterministic.

Theorem

Suppose A^t is deterministic. A^t is conservative if and only if the depth-first search algorithm on the right returns 'yes'.

Significance

 $\mathcal{A}_{\texttt{C}}^{\ast} \rightsquigarrow \mathcal{A}^{t}.$

Data: A[∗] c **Output**: 'yes' or 'no' Let bool $= 1$ foreach $(P_1 \times \ldots \times P_k) \parallel C' \in \text{Proc}(\mathcal{A}_{c}^{*})$ **do foreach** α s.t. $C' \stackrel{\alpha}{\longrightarrow}$ **do if** $(P_1 \times \ldots \times P_k) \nrightarrow{\sharp\alpha}$ then $bool := 0$ **break**

if $bool = 1$ **then return** 'yes' **else return** 'no'

Completeness (I)

Theorem Suppose A^t is deterministic. A^t is complete if and only if the algorithm on the right returns 'yes'.

```
Data: A∗
c
Output: 'yes' or 'no'
Let bool = 1foreach P \in Proc(P_{c,i}), 1 \leq i \leq k do
        let S = \{ C' \mid F_c^* \mid\mid C \stackrel{*}{\longrightarrow} F \mid\mid C', F[i] = P \}if there exists \alpha s.t. P \stackrel{\alpha}{\longrightarrow} and C' \not \stackrel{\sharp \alpha}{\longrightarrow} for all
        C
′ ∈ S then
               bool = 0break
if bool = 1 then return 'yes'
else return 'no'
```
KORK E KERKERKERKER

Significance

- \blacktriangleright $\mathcal{A}_{\mathcal{C}}^* \rightsquigarrow \mathcal{A}^t$,
- ► Compositionality: it checks the canonical components on the one-by-one basis.

Assumptions, Definitions, Theorems

Two further assumptions :

- ▶ Different canonical components share no actions $(Act(P_c i) \cap Act(P_c i) = \emptyset$ if $i \neq j$;
- \triangleright Actions of components are dual to actions of the connector, and vice versa $(\bigcup_{i=1}^{k} \mathit{Act}(P_{c,i}) = \{\sharp\alpha \mid \alpha \in \mathit{Act}(C)\}).$

Let $\widetilde{\alpha}|A$ be the projection of $\widetilde{\alpha}$ on $A\subseteq Act.$ Q $\stackrel{\widetilde{\gamma}}{\longrightarrow}_A$ Q′ if and only if there is $\widetilde{\alpha}$ such that Q $\stackrel{\widetilde{\alpha}}{\longrightarrow}$ Q' and $\widetilde{\gamma} = \widetilde{\alpha} | A$.

Definition (1) $C \preccurlyeq P_{c,i}$ if $C \stackrel{\widetilde{\alpha}}{\longrightarrow}_{Act(P_{c,i})}$ implies $P^*_{c,i} \stackrel{\sharp \widetilde{\alpha}}{\longrightarrow};$ (2) $C \succcurlyeq P_{c,i}$ if $P^*_{c,i} \stackrel{\widetilde{\alpha}}{\longrightarrow}$ implies $C \stackrel{\sharp \widetilde{\alpha}}{\longrightarrow}_{Act(P_{c,i})}.$

Theorem

 \mathcal{A}^{t} is conservative (resp. complete) if and only if $\textsf{C}\preccurlyeq P_{\textsf{c},i}$ (resp. $C \succcurlyeq P_{c,i}$) for each canonical component $P_{c,i}$ of \mathcal{A}^i .

Conservation (II)

Theorem With the previous three assumptions, $C \preccurlyeq P_{c,i}$ if and only if the algorithm on the right returns 'yes'.

Significance

- \blacktriangleright $\mathcal{A}_{\mathcal{C}}^* \rightsquigarrow \mathcal{A}^t$,
- \triangleright Compositional checking.

Data: $C, P_{c,i}$ **Output**: 'yes' or 'no' Construct a graph $G = \langle V, E \rangle$ such that $\blacktriangleright \blacktriangleright \blacktriangleright \blacktriangleleft = \text{Proc}(P_{c,i}^*) \times \text{Proc}(C)$ **►** $\mathbf{E} = \{ \langle \langle P_1, C_1 \rangle, \langle P_2, C_2 \rangle \rangle | P_1 \stackrel{\alpha}{\longrightarrow} P_2,$ $C_1 \xrightarrow{\sharp \alpha}$ Act($P_{c,i}$) $C_2, \alpha \in \text{Act}(P_{c,i})$ } Let bool $= 1$ ${\sf foreach \,} \langle P, C' \rangle$ reachable from $\langle P^*_{c,i}, C \rangle$ in ${\sf G}$ do **if** there is γ such that \blacktriangleright \vdash $\stackrel{\gamma}{\longrightarrow}$ \blacktriangleright C' $\xrightarrow{\sharp\gamma}$ Act(P_{c,i}) **then** $bool := 0$ **break if** $bool = 1$ **then return** 'yes' **else return** 'no'

Completeness (II)

Data: $C, P_{c,i}$ **Output**: 'yes' or 'no' Construct a graph $G = \langle V, E \rangle$ as in the previous algorithm Let bool $= 1$ ${\sf foreach \,} \langle P, C' \rangle$ reachable from $\langle P^*_{c,i}, C \rangle$ in **G do if** there is γ such that \blacktriangleright \vdash $\varphi \rightarrow$ \blacktriangleright C' $\xrightarrow{\sharp\gamma}$ Act(P_{c,i}) **then** $bool := 0$ **break if** $bool = 1$ **then return** 'yes' **else return** 'no'

Theorem

With the previous three assumptions plus the conservation of A^t , $C \succcurlyeq P_{c,i}$ if and only if the algorithm on the left returns 'yes'.

Significance

$$
\blacktriangleright \mathcal{A}_{c}^* \leadsto \mathcal{A}^t,
$$

 \blacktriangleright Finer-grained compositional checking.

Summary

- \triangleright We propose a semantic model for the dynamic connector-based architecture styles;
- \triangleright We show that the analysis of several basic properties of these architecture styles depends on architecture instances with fixed configurations, reducing the verification state space.

Outlook: the bridge between our semantic model and a mature ADL?