
1 © 2012 Alexander Egyed, Achraf Ghabi

Exploiting Traceability

Uncertainty between

Architectural Models and Code

Achraf Ghabi & Alexander Egyed

achraf.ghabi@jku.at & alexander.egyed@jku.at

WICSA/ECSA 2012

Institute for Systems Engineering and Automation

2 © 2012 Alexander Egyed, Achraf Ghabi

Traceability

 Informal definition:
The collection of traces which are documenting the

relationship between two artifacts.

 Useful particularly at maintenance time

 In this work:

— Two Artifacts: Model (solution elements) and Code

(code elements)

— Relationship: „is implemented by“

 Trace example:

— Model element A is implemented by code element C

3 © 2012 Alexander Egyed, Achraf Ghabi

Model and Code: VoD Client

playing

select

stop

play

Code: classes

MPEGDecoder.Button

MPEGDecoder.DStore

MPEGDecoder.LFrame

MPEGDecoder.Movie

MPEGDecoder.Header

4 © 2012 Alexander Egyed, Achraf Ghabi

Trace Matrix: Certainty

Code\mode elements play playing select stop

MPEGDecoder.Button x
MPEGDecoder.DStore x x x x
MPEGDecoder.LFrame x x
MPEGDecoder.Movie x
MPEGDecoder.Header x

X Trace

No-Trace

5 © 2012 Alexander Egyed, Achraf Ghabi

Uncertainty In Practice

Traceability is difficult:

 Loosing some key developers

 Understanding of the entire code

 Forgotten details

 Incorrect recollection of facts

 Changes in model/code

 Engineers might be uncertain about some trace

relationships.

6 © 2012 Alexander Egyed, Achraf Ghabi

Goal

 Allow the engineer to express what she REALLY

knows about a system

 Help engineer to

— Detect incorrectness/inconsistency in her knowledge

— Derive further traceability information based on her

knowledge

7 © 2012 Alexander Egyed, Achraf Ghabi

Expressing Uncertainty

Button

DStore

LFrame

Movie

Header

are implemented exactly in

Code Elements is implemented at most in
are

implemented

at least in

playing

select

stop

play

9 © 2012 Alexander Egyed, Achraf Ghabi

Footprint Graph

Button

DStore

LFrame

Movie

Header

play

playing

stop

select

Code Elem. Model Elem. Code Elem. Group

{stop} implAtMost {LFrame, Movie}

L, M

No-Trace

Uncertain Trace

10 © 2012 Alexander Egyed, Achraf Ghabi

Footprint Graph

play

playing

stop

select

Model Elem. Model Elem. Group Code Elem. Group

select, playing

select, playing

B, L

Uncertain Trace

B, L

{select, playing} implAtLeast {Button, LFrame}

L, M

No-Trace

Button

DStore

LFrame

Movie

Header

Uncertain Trace

Code Elem.

11 © 2012 Alexander Egyed, Achraf Ghabi

Footprint Graph

play

playing

stop

select B, L

B, L

L, M

select, playing

Model Elem. Model Elem. Group Code Elem. Group

play, playing

play, playing

D, L

D, L

{play, playing} implExactly {DStore, LFrame}

No-Trace

select, playing Button

DStore

LFrame

Movie

Header

Uncertain Trace

Code Elem.

Uncertain Trace

12 © 2012 Alexander Egyed, Achraf Ghabi

Propagation Rules

play

playing

stop

select

select, playing

play, playing

select, playing

play, playing

Model Elem. Model Elem. Group Code Elem. Group

Trace

Uncertain Trace

Button

DStore

LFrame

Movie

Header

Uncertain Trace

No-Trace

B, L

B, L

L, M

D, L

D, L

13 © 2012 Alexander Egyed, Achraf Ghabi

Result in Trace Matrix

Code play playing select stop

Button x

DStore

LFrame x

Movie

Header

X Trace

No-Trace

Group

 Filled the TM

using uncertainties

 But not complete

 Correctness depends

on the developer‘s

knowledge.

14 © 2012 Alexander Egyed, Achraf Ghabi

Further Input

 In big systems usually multiple developers will do

the traceability.

 Different understanding of the system.

 Another Engineer introduces this input in her

description:

{stop} implAtLeast {DStore}

15 © 2012 Alexander Egyed, Achraf Ghabi

Knowledge Conflict

{stop} implAtLeast {DStore}

play

playing

stop

select

play, playing

select, playing

play, playing

Model Elem. Model Elem. Group Code Elem. Group

Trace

Uncertain Trace

Button

DStore

LFrame

Movie

Header

Uncertain Trace

No-Trace

B, L

L, M

D, L

D, L

16 © 2012 Alexander Egyed, Achraf Ghabi

Correctness Constraint (1)

play

playing

stop

select

play, playing

select, playing

play, playing

Model Elem. Model Elem. Group Code Elem. Group

Trace

Uncertain Trace

Button

DStore

LFrame

Movie

Header

Uncertain Trace

No-Trace

B, L

L, M

D, L

D, L

 A code element cannot be implementing and not

implementing a model element at the same time

17 © 2012 Alexander Egyed, Achraf Ghabi

Correctness Constraints (2)

play

playing

stop

select A, C

B, C

C, D

B, C

Code Elem. Model Elem. Model Elem. Group Code Elem. Group

Uncertain

Trace

 Every group must have at least one model

element.

No-Trace play, playing

select, playing

play, playing

Button

DStore

LFrame

Movie

Header

Uncertain Trace

19 © 2012 Alexander Egyed, Achraf Ghabi

Validation

 Correctness, scalability

 Evaluation of all pair wise combinations of the

four types of input (implAtLeast, implAtMost,

implExactly, implNot)

 4 case study systems: ArgoUML, Siemens Route

Planning, Video on demand client, and USC

Inter-Library Loan

20 © 2012 Alexander Egyed, Achraf Ghabi

Correctness

 In most of the cases incorrect/conflicting input is

detected

 The more input the more likely an incorrectness

would be detected

 Incorrectness is not detected if an engineer has

an incorrect but consistent understanding of the

model-to-code mapping

 unlikely when multiple engineers are working

together

21 © 2012 Alexander Egyed, Achraf Ghabi

Scalability

 The growth of the footprint graph is polynomial

with the size of the model and code

 Size of graph = #C + #M + #input * (#C + #M)

 Largest study case 30.000 nodes (ArgoUML)

required less than a minute to convert the input

into the footprint graph and propagate the rules

for 38 ME

22 © 2012 Alexander Egyed, Achraf Ghabi

Summary

 Approach proposing how to describe engineers‘

knowledge about traceability

 Automatic detection of incorrect/inconsistent

knowledge

 Automatically derive further knowledge

 Applicable to all kinds of models that are

implemented in the code

23 © 2012 Alexander Egyed, Achraf Ghabi

Future Work

 Extend the input by adding some kind of

weighting to uncertainty constructs

 Use incremental reasoning

 Apply the same technique on model-to-model

traceability

 Conduct experiments on industrial projects

24 © 2012 Alexander Egyed, Achraf Ghabi

Discussion

Achraf Ghabi (achraf.ghabi@jku.at)

Alexander Egyed (alexander.egyed@jku.at)

Institute for Systems Engineering and Automation

