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Traceability 

 Informal definition: 
The collection of traces which are documenting the 

relationship between two artifacts. 

 Useful particularly at maintenance time 

 In this work: 

— Two Artifacts: Model (solution elements) and Code 

(code elements) 

— Relationship: „is implemented by“ 

 Trace example: 

— Model element A is implemented by code element C 
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Model and Code: VoD Client 
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Trace Matrix: Certainty 
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Uncertainty In Practice 

Traceability is difficult: 

 Loosing some key developers  

 Understanding of the entire code 

 Forgotten details  

 Incorrect recollection of facts 

 Changes in model/code 

 Engineers might be uncertain about some trace 

relationships. 
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Goal 

 Allow the engineer to express what she REALLY 

knows about a system 

 Help engineer to  

— Detect incorrectness/inconsistency in her knowledge 

— Derive further traceability information based on her 

knowledge 
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Footprint Graph 
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Footprint Graph 
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Footprint Graph 
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Propagation Rules 
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Result in Trace Matrix 
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Further Input 

 In big systems usually multiple developers will do 

the traceability. 

 Different understanding of the system. 

 Another Engineer introduces this input in her 

description: 

{stop} implAtLeast {DStore} 
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Knowledge Conflict 
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Correctness Constraint (1) 
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 A code element cannot be implementing and not 

implementing a model element at the same time 
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Correctness Constraints (2) 
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Validation 

 Correctness, scalability 

 Evaluation of all pair wise combinations of the 

four types of input (implAtLeast, implAtMost, 

implExactly, implNot) 

 4 case study systems: ArgoUML, Siemens Route 

Planning, Video on demand client, and USC 

Inter-Library Loan 

 

 

 



20 © 2012 Alexander Egyed, Achraf Ghabi 

Correctness 

 In most of the cases incorrect/conflicting input is 

detected 

 The more input the more likely an incorrectness 

would be detected 

 Incorrectness is not detected if an engineer has 

an incorrect but consistent understanding of the 

model-to-code mapping  

 unlikely when multiple engineers are working 

together 
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Scalability 

 The growth of the footprint graph is polynomial 

with the size of the model and code 

 Size of graph = #C + #M + #input * (#C + #M) 

 Largest study case 30.000 nodes (ArgoUML) 

required less than a minute to convert the input 

into the footprint graph and propagate the rules 

for 38 ME 
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Summary 

 Approach proposing how to describe engineers‘ 

knowledge about traceability 

 Automatic detection of incorrect/inconsistent 

knowledge 

 Automatically derive further knowledge 

 Applicable to all kinds of models that are 

implemented in the code 
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Future Work 

 Extend the input by adding some kind of 

weighting to uncertainty constructs 

 Use incremental reasoning 

 Apply the same technique on model-to-model 

traceability 

 Conduct experiments on industrial projects 
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