TracQL: A Domain-Specific Language for Traceability Analysis

Norbert Tauschl, Michael Philippsen!, and Josef Adersberger?
tUniversity of Erlangen-Nuremberg, Germany, [norbert.tausch|philippsen]@cs.fau.de
2QAware GmbH, Munich, Germany, adersberger@gaware.de

=== = = FRIEDRICH-ALEXANDER COMPUTER SCIENCE DEPARTMENT ]
= ———= = = UNIVERSITAT. PROGRAMMING SYSTEMS GROUP ‘
= = === ERLANGEN-NURNBERG ERLANGEN s GERMANY




= |ntroduction
o Motivation
o Problem

* The Traceability Query Language
o Goals
o Characteristics

= Evaluation
0 Architecture-to-code consistency

= Conclusion



Motivation

= Traceability helps to improve and maintain software
guality in the software development process.

* Project: A Software Project Control Center

Tool Connectors

s i VCS i Issues iWea\.vingI Metricsi

___________________________________________________________________

) : : ) ! : ! Extraction
=L : : : | L __] -1 (Domain Model)
| ! ! : : . Inference
) ; ; i | | (Traceability
=~ @ 1 1 1

— Traceability
—_—a—u
————— Model

' GraphML

Analysis

» [ dot |
| s101g

JFC)EIT\_(IJ:_ \

Exploration Rules Management Transformations

« Visualizations == = (Constraints == =Virtual Refactorings
= Analysis * (Anti)Patterns * Optimizations
Calculus Editor = Notifications



Problem

* |Implementation of traceability analysis is complex.
0 Value chain: Extraction -> Representation -> Analysis

= Current approaches do not provide a suitable framework.
0 They use different languages for analysis:

= Model-based: ATL, OCL, QVT

= Graph-based: Gremlin, GreQL

= Database-based: SQL

= XML-based: XPath, XPointer, XQuery

* Traceability-related: TOQL, VTML

0 Disadvantages:
= External DSLs are difficult to extend.

= Cumbersome to work with multiple data sources and to create
(inter-model) links between them.



The Traceabllity Query Language — Goals

* |dea:
0 Provide a language for the whole traceabillity value chain.

= Goals/Requirements:
0 Representation-Independence:
To work with multiple data sources including inter-model links.
o0 Extensibility:
To add new analysis and to adjust old ones to the current project.
0 EXxpressiveness:
To provide clear and concise traceability analyses.
o Performance:
No performance penalty that breaks the workflow.



The Traceability Query Language — Characteristics

Element

= TracQL is graph-based. | |
L] Property graph model ;e ies: Map][ r'”?\”)’]

Vertex +endVertex  +inEdges Edge
1 0.*

[ Adapter Concept +startVertex +outEdges
(e.g., Neo4) Graph-DB, EMF model)

= TracQL is statically typed.

0 Provides typed graphs.
0 Works with concrete artifact and link types (e.g. EMF classes).

= TracQL is an internal DSL which is:
0 based on Scala (object-oriented and functional language).
o directly extensible with new functions and operators.



= We focus on anomaly analysis.
Detection of divergences between architecture and code.

Architecture Model i_ode Model
[Component’]} Arch2 Codelink >[ Classh } Nemi”qu”kb[ alethod J

FieldAcgesslink

[Componenti} ArchizCodebink >[ ClassB } NES“““”"‘»[ aField J

Requiredinterface Inheritapcelink

[ Interface } Arch2 Cadelink >[ InterfaceA }

def findDivergences(graph: ArchitectureGraph) =
for { source <- graph.vertices
target <- findRelated(source) -- findAdjacent(source)
} handleDivergence(source, target)



Evaluation — Results

= Example: Find related artifacts (details in the paper).

def findRelated(artifact: QVertex) = artifact.successors(Arch2CodelLink).
during(_-successors(NestingLink), Every[Qvertex]).
successors(Link).
during(_.predecessors(NestingLink), Code.Types).
toSeq.predecessors(Arch2CodeLink) (' lIdentity(artifact)).
foldLeft(HashMap[QVertex, Int]J(Q)((map, a) => increaseCount(map, a))

= Evaluation: Industrial project (11k vertices, 38k edges)

EXpressiveness Performance [ms]
Tokens
TracQL
Gremlin Groovy 144 1.7 184 3.2 223
Gremlin Java 232 2.7 126 2.2 347
Cypher 301 3.5 - 44.0 5,982



= TracQL is an internal DSL focused on implementing
traceabllity analysis.

0 It aims at supporting the whole traceability value chain:
Extraction -> Representation -> Analysis

= TracQL fulfills our main goals/requirements:
0 Representation-Independence
0 Extensibility
0 Expressiveness
o Performance

= We evaluated TracQL on a non-trivial architecture-to-code
traceability problem.



	TracQL: A Domain-Specific Language for Traceability Analysis
	Overview
	Motivation
	Problem
	The Traceability Query Language – Goals
	The Traceability Query Language – Characteristics
	Evaluation
	Evaluation – Results
	Conclusion

