
1

Can We Sell Application Architectures?
(WICSA 2001 Key-note Presentation)

Can We Sell Application Architectures?
(WICSA 2001 Key-note Presentation)

August 28-31, 2001
Royal Netherlands Academy of Arts and Sciences

Amsterdam, The Netherlands

Dr. Wojtek (Voytek) Kozaczynski, Rational Software, USA

The question(s) The question(s)

Deployment EnvironmentDeployment Environment

Development EnvironmentDevelopment Environment

Family of Systems (Domain)Family of Systems (Domain)

Ex: On-line retail systems running on IBM
WebSphere and developed with RUP, Rational tools and
JBuilder

Ex: On-line retail systems running on IBM
WebSphere and developed with RUP, Rational tools and
JBuilder

Can we, for a given point in the development space, prepackage software assets
to significantly expedite development of (point) solutions?
If yes, what would these assets look like and how many of them would be
architectural assets?

Can we, for a given point in the development space, prepackage software assets
to significantly expedite development of (point) solutions?
If yes, what would these assets look like and how many of them would be
architectural assets?

2

What is an architectural asset? What is an architectural asset?

?If

?Then

?If

?Then
Architectural asset is a software artifact (or a group of artifacts), that captures
these significant architectural decisions
Architectural asset is a software artifact (or a group of artifacts), that captures
these significant architectural decisions

Software architecture encompasses the set of significant decisions about the
organization of a software system
?Selection of the structural elements and their interfaces by which a system is

composed
?Behavior as specified in collaborations among those elements
?Composition of these structural and behavioral elements into larger subsystems
?Architectural style that guides this organization

Software architecture encompasses the set of significant decisions about the
organization of a software system
?Selection of the structural elements and their interfaces by which a system is

composed
?Behavior as specified in collaborations among those elements
?Composition of these structural and behavioral elements into larger subsystems
?Architectural style that guides this organization

OutlineOutline

?Enterprise applications, a line in the design space
?Deployment environments
?Development environments
?Software assets
?Conclusions

?Enterprise applications, a line in the design space
?Deployment environments
?Development environments
?Software assets
?Conclusions

3

“Money talks” “Money talks”

Deployment EnvironmentDeployment Environment

Development EnvironmentDevelopment Environment

$$$$

DomainDomain

There should be economic incentives for
the asset producers and consumers to
prepackage and purchase architectural
assets ? the domain should have certain
characteristics:

• Large software development
investments

• High levels of repeatability
• Shortage of skilled developers
• …

There should be economic incentives for
the asset producers and consumers to
prepackage and purchase architectural
assets ? the domain should have certain
characteristics:

• Large software development
investments

• High levels of repeatability
• Shortage of skilled developers
• …

Enterprise ApplicationsEnterprise Applications

?Implement all or part of a business process
?Contain a model of a “business reality”

?Large amounts of highly structured information
?May have 1000s of data types and associations
?May have 1000000s of instances with complex relationships

?Small amounts of complex computation
?User interaction
?Constraint enforcement
?Process automation, …

?Often complex, distributed deployment infrastructure
?Multiple nodes
?Complex interfaces and communication

?Implement all or part of a business process
?Contain a model of a “business reality”

?Large amounts of highly structured information
?May have 1000s of data types and associations
?May have 1000000s of instances with complex relationships

?Small amounts of complex computation
?User interaction
?Constraint enforcement
?Process automation, …

?Often complex, distributed deployment infrastructure
?Multiple nodes
?Complex interfaces and communication

4

……

?Specific quality of service requirements
?Security of critical data and processes with widely exposed interfaces
?Scalability to large numbers of clients and transactions

?Overwhelming logistical complexity
?Multiple stakeholders
?Different technologies and development methods
?Rapid response to constantly changing business conditions
?Concurrent projects at different stages of development

?Specific quality of service requirements
?Security of critical data and processes with widely exposed interfaces
?Scalability to large numbers of clients and transactions

?Overwhelming logistical complexity
?Multiple stakeholders
?Different technologies and development methods
?Rapid response to constantly changing business conditions
?Concurrent projects at different stages of development

Time
To

Market

Time
To

Market

QualityQualityCostCost

Large investments Large investments

?By 2004, the worldwide IT services industry will grow
at a compound annual growth rate (CAGR) of 11% to
reach almost $584.6 billion

IDC Worldwide IT Services Industry Forecast Analysis, 1997-2004.

?Systems integration will grow at 13% CAGR; Rising from
$59 billion in 1999 to $109 billion by 2004
?Packaged software support and integration will grow at

15% CAGR; Rising from $35 billion in 1999 to $71 billion in
2004
?Network infrastructure management will grow at 16%

CAGR (interoperability is the major issue)

?By 2004, the worldwide IT services industry will grow
at a compound annual growth rate (CAGR) of 11% to
reach almost $584.6 billion

IDC Worldwide IT Services Industry Forecast Analysis, 1997-2004.

?Systems integration will grow at 13% CAGR; Rising from
$59 billion in 1999 to $109 billion by 2004
?Packaged software support and integration will grow at

15% CAGR; Rising from $35 billion in 1999 to $71 billion in
2004
?Network infrastructure management will grow at 16%

CAGR (interoperability is the major issue)

5

Unimpressive success rates Unimpressive success rates

?According to the Standish Group's Chaos study
?In 2000 Corporate America started 300,000 new software projects
?Close to 70% of the projects were either challenged or failed

?According to the Standish Group's Chaos study
?In 2000 Corporate America started 300,000 new software projects
?Close to 70% of the projects were either challenged or failed

Standish Group's Extreme Chaos Report, 2001

Challenged 49%

Succeeded 28%
Failed 23%

Development still difficult Development still difficult

?Ad-hoc development
?Development at low levels of abstraction
?Developers must cope with broad abstraction gap between

requirements and designs
?Reliance on labor-intensive activities
?No economically-significant reuse
?High levels of discovery and one-off implementations

… while enterprise systems can be grouped into
application families showing significant levels of
architectural similarities

?Ad-hoc development
?Development at low levels of abstraction
?Developers must cope with broad abstraction gap between

requirements and designs
?Reliance on labor-intensive activities
?No economically-significant reuse
?High levels of discovery and one-off implementations

… while enterprise systems can be grouped into
application families showing significant levels of
architectural similarities

6

The Enterprise Applications’ Domain Is It! The Enterprise Applications’ Domain Is It!

OutlineOutline

?On-line enterprise applications, a line in the design
space
?Deployment environments
?Development environments
?Software assets
?Components
?Pattern
?Architectural mechanisms
?Application frameworks, prepackaged software architectures

?Conclusions

?On-line enterprise applications, a line in the design
space
?Deployment environments
?Development environments
?Software assets
?Components
?Pattern
?Architectural mechanisms
?Application frameworks, prepackaged software architectures

?Conclusions

7

Two dominant deployment platformsTwo dominant deployment platforms
? Java 2 platform, Enterprise Edition (J2EE)

? JSP
? Servlets
? EJBs
? JMS
? JNDI
? JDBC
? JVM

? .NET
? ASPX
? .NET Components
? MSMQ
? Windows Registry
? ODBC
? Common Language Runtime

? The plaftorms share HTML, XML, SOAP, ..

? Java 2 platform, Enterprise Edition (J2EE)
? JSP
? Servlets
? EJBs
? JMS
? JNDI
? JDBC
? JVM

? .NET
? ASPX
? .NET Components
? MSMQ
? Windows Registry
? ODBC
? Common Language Runtime

? The plaftorms share HTML, XML, SOAP, ..

J2EE; container-based deployment architectureJ2EE; container-based deployment architecture

? Separation of concerns
? Application developers focus on components
? Platform developers focus on containers

? Containers mediate clients and components
? Transactions, resource pooling, persistence
? Policies specified through configuration not code

? Separation of concerns
? Application developers focus on components
? Platform developers focus on containers

? Containers mediate clients and components
? Transactions, resource pooling, persistence
? Policies specified through configuration not codeComponentsComponents

ContainersContainers

8

J2EE Container ArchitectureJ2EE Container Architecture

Component TypesComponent Types

?Client Components
? Applets, applications
? Execute on client virtual machine
? All other types execute on server

virtual machine

?Web Components
? Servlets, JavaServer Pages
? Deployed, managed, and executed

by web container
? Respond to requests from HTTP

and other protocols
? Generate web-based application

user interface

?Client Components
? Applets, applications
? Execute on client virtual machine
? All other types execute on server

virtual machine

?Web Components
? Servlets, JavaServer Pages
? Deployed, managed, and executed

by web container
? Respond to requests from HTTP

and other protocols
? Generate web-based application

user interface

?Application Server Components
? Enterprise Beans (Session & Entity)
? Deployed, managed, and executed by

application container
? Maintain conversational or persistent

state in instance variables between
method invocations

? Participate in distributed transactions that
span multiple resources

? Provide services concurrently to large
numbers of clients

? Perform client authentication and
authorization to access protected
services

?Application Server Components
? Enterprise Beans (Session & Entity)
? Deployed, managed, and executed by

application container
? Maintain conversational or persistent

state in instance variables between
method invocations

? Participate in distributed transactions that
span multiple resources

? Provide services concurrently to large
numbers of clients

? Perform client authentication and
authorization to access protected
services

9

Packaging ArchitecturePackaging Architecture

OutlineOutline

?On-line enterprise applications, a line in the design
space
?Deployment environments
?Development environments
?Software assets
?Conclusions

?On-line enterprise applications, a line in the design
space
?Deployment environments
?Development environments
?Software assets
?Conclusions

10

Development environment = toolsDevelopment environment = tools

? Software assets depend on tools
? Especially assets represented at

higher levels of abstraction
? Models
? Requirements

? Software assets depend on tools
? Especially assets represented at

higher levels of abstraction
? Models
? Requirements

Requirements
Management

Modeling

RTE

E+C+D

Deployment

CM

Models and UML profiles Models and UML profiles

Analysis Model

Design Model

User eXperience
Model

Use-Case
Model

Business Model

Implementation
Model

Deployment
Model

<<trace>>

<<trace>> <<trace>>

<<trace>> <<trace>>

<<trace>>

EAI ProfileEAI ProfileEAI Profile

DC ProfileDC ProfileDC Profile

JR-26JRJR--2626

WAE ProfileWAE ProfileWAE Profile

EDOC ProfileEDOC ProfileEDOC Profile

TechnologyTechnology
ProfilesProfiles

11

Profiles tighten UML semantics Profiles tighten UML semantics

A profile contains model elements which have been customized for a
specific domain or purpose by extending the metamodel using
stereotypes, tagged definitions and constraints. A profile may specify
model libraries on which it depends and the metamodel subset that it
extends.

— UML 1.4 Reference Manual

A profile contains model elements which have been customized for a
specific domain or purpose by extending the metamodel using
stereotypes, tagged definitions and constraints. A profile may specify
model libraries on which it depends and the metamodel subset that it
extends.

— UML 1.4 Reference Manual

DomainDomainDomain

ProfileProfileProfile

UMLUMLUML

A domain concept is represented by one more model A domain concept is represented by one more model
element(s) in a profileelement(s) in a profile

Model elements in a profile are semantic Model elements in a profile are semantic
refinements of UML model elementsrefinements of UML model elements

Example of a profile elementExample of a profile element

Application Server
Components

Application ServerApplication Server
ComponentsComponents

A domain concept is a component managed A domain concept is a component managed
by an EJB application containerby an EJB application container

EJBEJBEJB

UMLUMLUML

UML contains Subsystem modeling UML contains Subsystem modeling
element that is used to represent element that is used to represent
collective behavior of enclosed elementscollective behavior of enclosed elements

JSR-26JSRJSR--2626

JSRJSR--26 profile stereotyped the 26 profile stereotyped the
Subsystem to represent elements of Subsystem to represent elements of
Enterprise Java Beans Enterprise Java Beans

«EJB»

12

RTE and UML profiles RTE and UML profiles

Analysis Model

Design Model

User eXperience
Model

Use-Case
Model

Business Model

Implementation
Model

Deployment
Model

<<trace>>

<<trace>> <<trace>>

<<trace>> <<trace>>

<<trace>>

EAI ProfileEAI ProfileEAI Profile

DC ProfileDC ProfileDC Profile

JR-26JRJR--2626

Transformation

Rules

RTE Engine

«derived from»

Executable
Artifacts

Development environment dependenciesDevelopment environment dependencies

Despite all standardization (UML, Profiles, Java,
J2EE, XML, SOAP, …) complex assets including
requirements, models and generated artifacts are
still very dependent on their development
environments

Despite all standardization (UML, Profiles, Java,
J2EE, XML, SOAP, …) complex assets including
requirements, models and generated artifacts are
still very dependent on their development
environments

13

OutlineOutline

?On-line enterprise applications, a line in the design
space
?Deployment environments
?Development environments
?Software assets
?Components
?Pattern
?Architectural mechanisms
?Application frameworks; prepackaged software architectures

?Conclusions

?On-line enterprise applications, a line in the design
space
?Deployment environments
?Development environments
?Software assets
?Components
?Pattern
?Architectural mechanisms
?Application frameworks; prepackaged software architectures

?Conclusions

Component

Pattern Libr.

Categories of software assetsCategories of software assets

Mechanism

Appl Framework ? Customizable “starter kit” for an application family
(ex: a base for on-line market systems)

? Reusable solution template for a domain-specific
functionality or service (ex: user presentation
request processing)

? Set of related reusable design templates (ex: GoF
patterns, Sun J2EE patterns, .NET patterns)

? A reusable, plugable element of a software
solution with well defined interfaces and behavior

? Customizable “starter kit” for an application family
(ex: a base for on-line market systems)

? Reusable solution template for a domain-specific
functionality or service (ex: user presentation
request processing)

? Set of related reusable design templates (ex: GoF
patterns, Sun J2EE patterns, .NET patterns)

? A reusable, plugable element of a software
solution with well defined interfaces and behavior

14

Herzum & Sims:
Business Component Factory: A Comprehensive Overview
of Component-Based Development for the Enterprise.

ComponentsComponents
?A component is a self-contained software construct that has a

defined use, has a run-time interface, can be autonomously
deployed, and is built with foreknowledge of a specific
component socket.

?A component socket is a well-defined and well-known run-time
interface to a supporting infrastructure into which the component
will fit.

?A component is built for composition and collaboration with other
components.

?A component socket and the corresponding components are
designed for use by a person with a defined set of skills and
tools.

?A component is a self-contained software construct that has a
defined use, has a run-time interface, can be autonomously
deployed, and is built with foreknowledge of a specific
component socket.

?A component socket is a well-defined and well-known run-time
interface to a supporting infrastructure into which the component
will fit.

?A component is built for composition and collaboration with other
components.

?A component socket and the corresponding components are
designed for use by a person with a defined set of skills and
tools.

PatternsPatterns

? Expert solutions to recurring problems
?Codify best practices identified by experience

? Solution descriptions, not solution instances
?Applied to create specific solution instances

? Constrain structure and behavior of participating
elements
?Variability points (placeholders) permit adaptation and

customization

? Can be combined to create solution mechanisms
(architecture frameworks)

? Expert solutions to recurring problems
?Codify best practices identified by experience

? Solution descriptions, not solution instances
?Applied to create specific solution instances

? Constrain structure and behavior of participating
elements
?Variability points (placeholders) permit adaptation and

customization

? Can be combined to create solution mechanisms
(architecture frameworks)

15

Types of PatternsTypes of Patterns

? Can be differentiated by various factors
?Levels of abstraction
?Software development life cycle phases
?Application domains
?Technology domains

? Often grouped into pattern libraries
?GoF patterns
?Sun J2EE patters

? Can be differentiated by various factors
?Levels of abstraction
?Software development life cycle phases
?Application domains
?Technology domains

? Often grouped into pattern libraries
?GoF patterns
?Sun J2EE patters

The Sun J2EE pattern libraryThe Sun J2EE pattern library
P
R
P
E
S
E
N
T
A
T
I
O
N

P
R
P
E
S
E
N
T
A
T
I
O
N

B
U
S
I
N
E
S
S

B
U
S
I
N
E
S
S

INTEGRATIONINTEGRATION

?
? ?

? ?

?

? ?

? ?

? ?

? ?

16

Front Controller structure Front Controller structure

Front Controller interactionsFront Controller interactions

17

Service to Worker structure Service to Worker structure

Service to Worker interactionsService to Worker interactions

18

Use of J2EE patternsUse of J2EE patterns

?The J2EE patterns have great education value
?However, they are not directly applicable
?Each pattern can be implemented in multiple ways

• Different implementation strategies
• Implementation strategy must be decided before a pattern can be used

?They are not used individually, but in groups
• A grouping mutually constraints implementation strategies of participating

patterns

?What we found directly (re)usable are architecture
mechanisms (aka architecture frameworks)
?Groupings of two or more pattern implementation strategies
?In UML mechanisms are represented as model templates

captured in «framework» package

?The J2EE patterns have great education value
?However, they are not directly applicable
?Each pattern can be implemented in multiple ways

• Different implementation strategies
• Implementation strategy must be decided before a pattern can be used

?They are not used individually, but in groups
• A grouping mutually constraints implementation strategies of participating

patterns

?What we found directly (re)usable are architecture
mechanisms (aka architecture frameworks)
?Groupings of two or more pattern implementation strategies
?In UML mechanisms are represented as model templates

captured in «framework» package

Presentation request processing mechanismPresentation request processing mechanism

19

Mechanism is a model templateMechanism is a model template

<Client>

<View>

One for the
entire
application

HttpServletRequest
(from http)

<<Interface>>

HttpServlet
(from http)

G S

RequestDispatcher
(from servlet)

forward()
include()

<<Interface>>

HttpSession
(from http)

<<Interface>>

The highlighted elements are the formal
parameters of the mechanism (i.e., must
be provided by the instantiator of the
mechanism).

<BusinessDelegate>

//perform business processing()

<PresentationRequestDispatcher>
<<Http_Servlet>>

0..*
+business service provider

0..*

An updated version of
the existing Resource
Map must be provided
as a parameter to the
mechanism.

<Resource
Map>

request response from view

request response

Within the Web container, all accesses to a URL must be done via the
RequestDispatcher. The RequestDispatcher is request-dependent (i.e., there is
one RequestDispatcher for every HttpRequest). The RequestDispatcher
gathers state information on the communication "chain" for a specific request
(i.e., it tracks the "chaining" of forward and include messages resulting from a
single request). Thus, it is the RequestDispatcher that detects when a
"forward" message is send after an "include" message has already been sent
for the same request (a bad thing, as forwards flush the response buffer before
they are sent).

In our case, this means that all requests from the
PresentationRequestController to the <PresentationRequestDispatcher> and
from the <PresentationRequestDispatcher> to the <View>s are done via the
RequestDispatcher.

Resource Map
<<bind>>

ResourceMapDelegate
(from Resource M...

PresentationRequestController

H S

make request

11

forward request to dispatcher

forward request

authenticate user

Access to app server services mechanismAccess to app server services mechanism

20

Key architecture decisions Key architecture decisions
? There is a single entry point to the application (the front controller)
? The front controller uses the resource map to identify user’s re quest
? The front controller authenticates users

? Reroutes requests from new users to sign-in use-case dispatcher
? There is one dispatcher per use-case
? Dispatchers delegate business logic to application server components

(EJBs) via business delegates
? Business delegates are a separation layer between presentation and business layers

of the system
? Dispatchers delegate generation of user interfaces to views
? Front controller and dispatchers are implemented as servlets
? Views are implemented as JSPs
? Delegates are implemented as Java Beans
? Business services are implemented as Session EJBs

? Directly or as façades
? Entity Beans use CMP for state persistency

? There is a single entry point to the application (the front controller)
? The front controller uses the resource map to identify user’s re quest
? The front controller authenticates users

? Reroutes requests from new users to sign-in use-case dispatcher
? There is one dispatcher per use-case
? Dispatchers delegate business logic to application server components

(EJBs) via business delegates
? Business delegates are a separation layer between presentation and business layers

of the system
? Dispatchers delegate generation of user interfaces to views
? Front controller and dispatchers are implemented as servlets
? Views are implemented as JSPs
? Delegates are implemented as Java Beans
? Business services are implemented as Session EJBs

? Directly or as façades
? Entity Beans use CMP for state persistency

Consequence; all use-case realizations look the same Consequence; all use-case realizations look the same

21

……

One for the entire
application

HttpServletRequest

(from http)

HttpServlet

(from http)

G S

RequestDispatcher
(from servlet)

HttpSession
(from http)

createaccount_verify
(from Create Account)

CreditInfo
(from UtilityClasses)

cardNumber : String = ""
city : String = ""
zip : String = ""
name : String = ""
address : String = ""
state : String = ""
prevCardNumber : String = ""
expiration : String = ""

CreditInfo()

UserInfo

(from UtilityClasses)
userId : String = ""
password : String = ""
firstName : String = ""
lastName : String = ""
addr1 : String = ""
addr2 : String = ""
city : String = ""
state : String = ""
zip : String = ""
country : String = ""
phone : String = ""
email : String = ""
status : String = ""
uniqueId : String = ""
accountNumber : String = ""
cardName : String = ""
cardType : String = ""
cardExpirationDate : String = ""
secretNumber : String = ""

UserInfo()

Hashtable
(from util)

Hashtable()
put()

AccountManagerDelegate
(from AccountManager)

validate()
AccountManagerDelegate()
create()
retrieve()
hasPendingPayment()
update()
getAccountManagerRemote()
getUnpaidPendingPayments()
activateUserAccount()
deactivateUserAccount()
getCreditCardInfo()
getAllPreviouslyListedItems()
hasPreviouslyListedItems()
getUserAccountByUserId()
getUserAccountByUniqueId()
recordPendingPaymentNotice()
deletePendingPayments()
setUserUIDToGroupId()

EmailManagerDelegate
(from EmailManager)

EmailDelegate()
sendMail()

SignInLogDelegate
(from SignInLoggerManager)

SignInLogDelegate()
addSignInAttempt()

CreateAccountDispatcher

(from Create Account)

CreateAccountDispatcher()
doGet()
doPost()

H S

11

11
11

createaccount_email

(from Create Account)

ResourceMap
(from BusinessLogic)

ResourceMapDelegate
(from ResourceMap)

PresentationRequestController
(from Presentation Logic)

<<Http_Servlet>>

11

get resource info

All requests from the PresentationRequestController
to the CreateAccountDispatcher and from the
CreateAccountDispatcher to the views are done via
the RequestDispatcher.

home
(from User Home)

account_home

(from User Home)

request response from view

request response

request response

request response

request response

createaccount_entry
(from Create Account)

request response
createaccount_entry_client_page

(from createaccount_entry)

check()
next_check_step()

1

1

1

1

<<build>>

forward request to dispatcher

authenticate user

forward request

Front Controller

Delegates

Views

Dispatcher

Value Objects

System structure becomes predictable and repeatableSystem structure becomes predictable and repeatable

?System decomposed into a few business components
?Vertical, large-grain system “chunks” responsible for sets of related

uses cases
?Each use-case maps into structurally consistent use case

realization
?One dispatcher
?Shared delegates and services
?Shared views

?New use-cases can be added without any impact on existing
use case realizations
?Update to resource map
?New dispatcher
?New services or extensions to existing services

• Changes to existing services should be hidden by business delegates

?New views or extensions to existing views
• Changes to existing vies should be hidden behind view parameters

?System decomposed into a few business components
?Vertical, large-grain system “chunks” responsible for sets of related

uses cases
?Each use-case maps into structurally consistent use case

realization
?One dispatcher
?Shared delegates and services
?Shared views

?New use-cases can be added without any impact on existing
use case realizations
?Update to resource map
?New dispatcher
?New services or extensions to existing services

• Changes to existing services should be hidden by business delegates

?New views or extensions to existing views
• Changes to existing vies should be hidden behind view parameters

That’
s ar

chit
ectu

re to
 me!

That’
s ar

chit
ectu

re to
 me!

22

We can do better than prepackaging mechanismsWe can do better than prepackaging mechanisms

?We can prepackage application frameworks
? Application framework is an implementation of a “solution construction

starter kit”
? Requirements, models, code, deployment descriptors, documentation and more
? Encapsulates key design decisions = architecture
? Developers can concentrate on implementation of business use-cases

? Rational On-line Retail Application Framework includes
? Presentation Request Processing mechanism
? Session EJB Access mechanism
? Front Controller
? Resource Map service (and delegate)
? Email service
? Logging service
? Systems Parameters Management service
? Partial implementation of the User Account Management business component

• Create Account use-case realization
• Sign-in use-case realization

?We can prepackage application frameworks
? Application framework is an implementation of a “solution construction

starter kit”
? Requirements, models, code, deployment descriptors, documentation and more
? Encapsulates key design decisions = architecture
? Developers can concentrate on implementation of business use-cases

? Rational On-line Retail Application Framework includes
? Presentation Request Processing mechanism
? Session EJB Access mechanism
? Front Controller
? Resource Map service (and delegate)
? Email service
? Logging service
? Systems Parameters Management service
? Partial implementation of the User Account Management business component

• Create Account use-case realization
• Sign-in use-case realization

OutlineOutline

?On-line enterprise applications, a line in the design
space
?Deployment environments
?Development environments
?Software assets
?Conclusions

?On-line enterprise applications, a line in the design
space
?Deployment environments
?Development environments
?Software assets
?Conclusions

23

In conclusionIn conclusion
?Yes, we can prepackage architecture-centric assets for a given

point in the development space
?The most articulated form of these assets are application

frameworks
?Creation of application frameworks should be driven by

business, not technical concerns
?Large investments in multiple instances of an application family
?Common, mature deployment environment
?Powerful, commonly-accepted development environment
?Agreement on representation of reusable assets

?Look for application frameworks coming up from Rational,
Microsoft, IBM and other companies

?Can we make $$ on prepackaging architectures?

?Yes, we can prepackage architecture-centric assets for a given
point in the development space

?The most articulated form of these assets are application
frameworks

?Creation of application frameworks should be driven by
business, not technical concerns
?Large investments in multiple instances of an application family
?Common, mature deployment environment
?Powerful, commonly-accepted development environment
?Agreement on representation of reusable assets

?Look for application frameworks coming up from Rational,
Microsoft, IBM and other companies

?Can we make $$ on prepackaging architectures?

Thank YouThank You

wojtek@rational.comwojtek@rational.com

24

Asset-Based DevelopmentAsset-Based Development

?Development based on economically-significant reuse
of software assets
?Reusable Asset Specification (RAS) defines standard

way of packaging assets

?Development based on economically-significant reuse
of software assets
?Reusable Asset Specification (RAS) defines standard

way of packaging assets

Asset Package Structure
(from a. RAS Core)

Context Information

(from Asset Package Structure)

Usage Information

(from Asset Package Structure)

Solution Information

(from Asset Package Structure)

Classification Information

(from Asset Package Structure)

Asset Package Structure
(from a. RAS Core)

Context Information

(from Asset Package Structure)

Usage Information

(from Asset Package Structure)

Solution Information

(from Asset Package Structure)

Classification Information

(from Asset Package Structure)

Variability points can be
context- independent or
relevant only to a specific
context.

A Context can impact each
artifact in a different way.
Artifact Context represents
"interpretation of a Context"
for a specific Artifact

For each Artifact there is at least
one Context that the Artifact is in
=> There is at least one context in
an Asset (a "root context")

An artifacts can be related to
another artificat in the same
or in a different Assets(s).

Asset

Solution

11

Variability Point

ContextArtifact

0..n +context-free VP0..n

0..n+nested artifacts0..n

1..n1..n

0..n+related artifacts 0..n

Artifact Context

0..n

+context-dependent VP

0..n

0..n

1

0..n

11

0..n

1

0..n

0..n0..n

Structure Of An AssetStructure Of An Asset

25

For each variability point there must
exist at least one activity that
describes how to bind that variability
point (what to do with it).

3. For each Artifact there may
be a set of Activities that
describe how to apply the
Artifact. Some of these
Activities are context-dependent

1. There may be a set of
context-independent Activities that
"operate" on a group of Artifacts

2. For each Context there may be a
set of activities that apply only to
that context. Each Activity in the
group may "touch" multiple Artifacts

Variability Point

Artifact Context

0..n
+context-dependent VP

0..n

Asset

Activity
0..n0..n

0..n

0..n

+var pt binding rule0..n

+context-fee VP0..n

0..n

0..n

0..n

+context-dependent actv0..n

Context

1..*

0..n

1..*

0..n

Artifact

0..n

+context-free VP

0..n

0..n

0..n

+context-independent actv
0..n

0..n

1

0..n

1

0..n

Usage

11

0..n0..n

0..n0..n

0..n0..n

Application Of An AssetApplication Of An Asset

