
Software Architecture: Implications
for Computer Science Research

C. Williams
IBM T. J. Watson Research Center
P.O. Box 218, Yorktown Heights, NY 10598, USA
(914)-945-1105, Fax: (914)-945-4017
clayw@us.ibm.com

Abstract
Software architecture has the potential to significantly shift software development
from dealing with fine grained (program level) constructs to a higher level
emphasis. This position paper discusses some of the major computer science
questions that require investigation to facilitate this shift. It focuses on three
particular areas: semantics and languages, formal verification, and measurement
and metrics. These areas are examined as part of the scientific basis on which
progress in software architecture relies. In each area, high level challenges are
identified and potential research directions are discussed.

Keywords
Software architecture, granularity, semantics, languages, metrics, measurement,
formal verification

1 INTRODUCTION

In (Shaw and Garlan, 1996), the authors discuss a two-phase model for the
emergence of a professional engineering discipline. The first phase is the
transition from a craft, which relies on virtuoso effort and haphazard methods, to
routine production. As a result of routine production, the second phase occurs,
which is the transformation of routine production into engineering via the
development and incorporation of a supporting science. Software development
has completed the first phase of this process, and the second is underway. This

paper examines some of the questions that will be posed to computer science as a
result of the emergence of software architecture as a sub-discipline of software
engineering. All of these questions have their roots in the issue of trying to raise
the granularity used when building software systems.

The Problem of Granularity
The need to increase the level of abstraction used when developing software has
long been acknowledged. However, efforts to raise the level of granularity at
which software development occurs have met with mixed results at best. In spite
of these efforts, industrial software construction deals effectively with abstraction
only at the program level.
 In the paper below, I explore three areas of computer science that could help
software architecture raise the level of granularity involved in developing
software. These are semantics and languages, formal verification, and
measurement and metrics.

2 SEMANTICS AND LANGUAGES

The study of semantic structures has traditionally focused on mathematical and
programming constructs at a very fine level of granularity. Program semantics
are typically studied at the level of repetition structures (Dijkstra, 1990),
categories and data types (Mitchell, 1996), abstract machines (Plotkin, 1982),
continuous functions and least fixed points (Scott, 1982), and other fine grained
structures. While the gains from these studies have been impressive and
significant, understanding semantics at a higher level of granularity is required
for progress in software architecture. Thus, an important part of the science that
must emerge to support software engineering is the semantics of complex
architectural descriptions.
 Developing semantic theories of more complex language constructs is a
challenging and difficult enterprise. For example, questions concerning the
semantics of method specialization and inheritance remain open (Mitchell, 1990).
The development of software architectures using architectural definition
languages (ADLs) will provide a set of difficult semantic issues at a significantly
higher level of granularity and complexity than has been effectively dealt with
thus far. These issues will foster further research in the theory of semantics and
languages.

Example: Design Patterns
An example of an area where semantic progress will be needed is the field of
design patterns. Design patterns are abstract representations of commonly
occurring solutions for software architectural issues. Catalogs of design patterns
are emerging; (Gamma et. al., 1995) is a source for design patterns dealing with

object-oriented architectures. (Shaw and Garlan, 1996) argue that no single
semantic framework will be capable of providing the variety of analytic
capabilities that might be desired for architectural descriptions in an ADL. Thus,
at least some of the semantics must be specified as needed. This raises two issues.

 First, as commonly used design patterns are discovered and documented, basic
semantics should be specified for the pattern and supported in ADLs that typically
use the pattern. For instance, the Singleton pattern (Gamma, et. al., 1995)
provides a mechanism to guarantee that a class has exactly one instance, and
provides an easily available access point for this instance. Thus, basic semantic
invariants about objects that are Singletons can be derived. One such invariant is
that an object that is an instance of a Singleton must be the only instance. This
can
be represented using many formal semantic notations. Examining design patterns
to identify fundamental properties, and the design and development of basic
semantic representations for these properties is an important task in ADL
research.
 The second issue involves semantic properties that are not fundamental to a
component, but might be needed to perform some desired analysis using an ADL.
Just as ADLs should make it simple to represent patterns as first-class
abstractions (Shaw and Garlan, 1996), specialized semantics should be
represented in a manner that provides a unified view of the general and
specialized semantics of the component in question. For example, suppose that a
data repository is going to be represented in an architecture as a Singleton pattern.
If the component represented by the pattern has complex relationships in the
architecture (such as providing atomic operations on data to several other
components), the details of these relationships need to be specified in such a way
that analysis can use them as well as the implicit, fundamental semantic notions
already developed for the pattern. The development of powerful and efficient
representations for specialized semantic information is a second task that ADL
research must address.

3 VERIFICATION

Closely related to the area of semantics for reasoning about architectural
descriptions is the notion of verification. Verification techniques exist for
sequential, concurrent, and distributed programs (Apt and Olderog, 1991). These
techniques rely on program level methods such as operational semantics and
syntax-directed assertional proof systems. If software architectures are expressed
in an ADL with well-defined semantic properties, the possibility of verifying
certain properties of the architecture arises. Two issues arise concerning the

development of mathematically rigorous methods for performing these
verifications.
 The first concerns the goals of verification analysis. What are the properties of
interest for a given architecture? There are several candidates to consider, and in
some cases they are architecture dependent. For example, pipe and filter
architectures might raise questions concerning deadlocks and fairness. Certain
database architectures raise the issue of commutativity of operations and of
atomicity. Experience in developing and analyzing architectures, as well as the
structure of the semantics available, should be used to determine the goals of
verification analysis for software architectures.
 Given the goals of the verification analysis and the semantic structures of the
ADLs that are used to represent software architectures, new techniques for
verification will need to be developed. The development of concurrent programs
required the addition or extension of various capabilities (such as compositionality
and determinism) to sequential verification techniques. Similarly, higher level
semantics of ADLs will require the development of novel proof methods for
verifying the desired properties of software architectures.

4 MEASUREMENT AND METRICS

The efforts of software engineers to efficiently build economical, reliable, and
maintainable systems has lead to a plethora of models and metrics concerning
issues such as productivity, complexity, cost estimation, and reliability (good
surveys include (DeMarco, 1982) and (Conte, et. al., 1986)). Critiques of and
proposals for metrics research also abound, such as (Kitchenham, et. al., 1995). If
attempts at developing a scientific basis for software architecture are successful,
measurement will be affected profoundly. Two specific challenges are discussed
below.
 The first challenge will be to change what is being measured. Despite the best
efforts of many researchers, the fundamental models and metrics used in the
industry today still rely on lines of code (LOC) and other program level constructs
as the basis for measurement and prediction. The development of software
architecture (and particularly component based architectures) will provide an
unprecedented opportunity for fundamentally changing the field of software
measurement. Models and measurements for software construction can be
refocused around components, connectors, patterns, and their properties.
 Beyond redefining what is being measured, software architecture might also
have an impact on deeper, more fundamental questions concerning software. An
ongoing question that arises as a result of measuring properties of software is the
validity of treating software as a physical entity. Consider the field of software
reliability (Musa, Iannino, and Okumoto, 1987). Is developing reliability models
for software systems using assumptions that are typically valid for physical

systems (such as hardware) the best way to proceed? Or does software, as a
conceptual rather than physical product, have different properties on which we
should focus? Software architecture may be important in considering questions
like this one, because it raises the granularity considerably as we consider the
conceptual entities that are software components. Fundamental properties exist
for physical components (resistivity, modulus, melting point, etc.), and can be
used for reasoning about a physical system composed of such components. A goal
of software architecture should be to explore software components, connectors,
and patterns for fundamental properties that will provide insight into a system
composed of the components. Perhaps such properties will be analogous to
properties in the world of physical systems, but we should be sensitive to the fact
that they might be markedly different.

5 CONCLUSION

In this paper, I examined three potential areas where the development of software
architecture might spur new research in computer science to provide an avenue
for developing software systems at a higher level of granularity. These were
semantics and language theory, verification, and measurement and metrics.
Several potential topics of investigation were proposed.
 In the area of semantics and language design, we need to explore design
patterns and develop sets of semantic constructs for ADLs that are sufficient to
capture fundamental properties of the patterns. We also need capabilities for
capturing specialized (architecture dependent) semantics and treating them in a
unified manner with the fundamental constructs.
 In verification, we must determine the goals that verification has when
examining software architectures. Techniques that support these goals will need
to be explored, and new techniques for verifying software architectures will need
to be developed.
 Finally, software architecture provides new opportunities in the area of models
and metrics. First, changing the practice of measuring and building models based
on LOC can be a goal of software architecture. The deeper question of the
fundamental nature and properties of software components may also be affected
by developments in software architecture. The impact of changes in measurement
practice offered by software architecture is directly applicable to industrial issues
faced today.
 In exploring these three areas, the breadth and scope of the challenges facing
software architecture are demonstrated. Direct, near term enhancements to
industrial practices are one result of architectural research, yet at the same time,
software architecture raises profound theoretical questions. Just as high level
programming languages based on sound theoretical concepts helped make routine
software production possible, developing sound theories of higher level

architectural constructs will be an important part of the effort to create an
engineering discipline for software construction.

6 REFERENCES

Apt, K.R. and Olderog, E. (1991) Verification of Sequential and Concurrent
Programs. Springer-Verlag, New York.

Conte, S.D., Dunsmore, H.E., and Shen, V.Y. (1986) Software Engineering
Metrics and Models. Benjamin/Cummings, Menlo Park, CA.

DeMarco, T. (1982) Controlling Software Projects. Prentice-Hall, Englewood
Cliffs, NJ.

Dijkstra, E.W. and Scholten, C.S. (1990) Predicate Calculus and Program
Semantics. Springer-Verlag, New York.

Kitchenham, B., Pfleeger, S.L., and Fenton, N. (1995) Towards a framework for
software measurement validation. IEEE Trans. on Soft. Eng., 21, 929–44.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995) Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley, Reading,
MA.

Mitchell, J.C. (1990) Toward a Typed Foundation for Method Specialization and
Inheritance, in Principles of Programming Languages (ed. P. Hudak), 17th
ACM Symposium: Principles of Programming Languages, San Francisco,
CA.

Mitchell, J.C. (1996) Foundations for Programming Languages. MIT Press,
Cambridge, MA.

Musa, J.D., Iannino, A., and Okumoto, K. (1987) Software Reliability:
Measurement, Prediction, Application. McGraw-Hill, New York.

Plotkin, G.D., (1982) An Operational Semantics for CSP, in Formal Description
of Programming Concepts II (ed. D. Bjorner), Proc. of IFIP Working
Conference, Garmisch-partenkirschen, Germany.

Scott, D.S. (1982) Domains for Denotational Semantics, in Springer Verlag
Lecture Notes in Computer Science vol. 140, Springer-Verlag, New York.

Shaw, M. and Garlan, D. (1996) Software Architectures: Perspectives on an
Emerging Discipline. Prentice-Hall, Upper Saddle River, NJ.

7 BIOGRAPHY

Clay Williams is an Advisory Software Engineer in the Center for Software
Engineering at IBM T.J. Watson Research Center. He received his Ph.D. in

computer science from Texas A&M University in 1994. He is a member of the
ACM and the IEEE.

