
Shaw: Resource Coalitions 11/03/98 1

Architectural Requirements for Computing
with Coalitions of Resources

Position Paper

Mary Shaw
Computer Science Department

Carnegie Mellon University
Pittsburgh PA 15213

Mary.Shaw@cs.cmu.edu

Voice: 412-268-2589
Fax: 412-268-5576

November 3, 1998

Abstract

Widespread use of the Internet is enabling a fundamentally new approach to software
development: computing through dynamically formed, task-specific, coalitions of distributed
autonomous resources. The resources may be information, calculation, communication, control,
or services. Unlike traditional software systems, the coalitions lack direct control over the
incorporated resources, which are independently created and managed. Moreover, the
resources may be transient, either because of the resource manager’s actions or because of
service interruptions. Development tools for resource coalitions will require new degrees of
autonomy and automation in order to identify, compose, and track the resources. An
economically viable reward structure will be required to establish a rich population of available
resources. Evaluation will require new models of adequacy rather than classical full
correctness. Computing through resource coalitions will thus create novel architectural
challenges and opportunities.

Keywords: resource coalition, distributed open systems, software marketplace

Introduction

Software architecture is the study of the structures that guide the organization of software
components and subsystems into complete systems. Traditionally we have studied
architectures of large complex integrated systems, with emphasis on the differences among
their organizational styles and especially on differences in the ways the parts interact. These
examples have been closed systems—they are controlled by single institutions—as have their
architectures. The constituent components may be acquired from external sources, but when
incorporated in a system they come under control of the system designer. When the
architectures are static they don’t admit of significant runtime variation; when the architectures
are dynamic they can vary only under preset constraints. Analysis of these systems uses
traditional closed-system models for correctness that emphasize a priori reasoning and analysis.

Successful large systems can also emerge without central control. The Internet is such an open
system: It is minimally standardized, chiefly at the level of the protocols, addresses, and
representations that allow individual sites to interact. It admits of considerable variation both in

Shaw: Resource Coalitions 11/03/98 2

the hardware that lies below these standards and the applications that lie above. There is no
central authority for control or validation. Individual sites are independently administered.
Individual developers can provide, modify, and remove resources at will.

With the recent exponential expansion of the Internet, especially through the access
mechanisms of the World-Wide Web, a new set of architectural opportunities emerges. The
Internet hosts a wide variety of resources: primary information, communication mechanisms,
computation in the form of applications that can be invoked, control that coordinates the use of
resources, and services such as secondary (processed) information, simulation, editorial
selection, or evaluation. These resources are independently developed and independently
supported. They can be composed to carry out specific tasks set by a user; in many cases the
resources need not be specifically aware of the way they are being used, or even whether they
are being used. The selection and composition is likely to be done afresh for each task, as
resources appear, change and disappear regularly. Unfortunately, it’s hard to automate the
selection and composition activity because of poor information about the character of services
and difficulties with interoperability and hence with establishing correctness.

Resource Coalitions: a new form of software

The shift from closed integrated systems to open resource coalitions yields a computing
environment that differs from traditional environments in several important characteristics:

• The Internet provides access to a collection of resources, which are capable of invocation
and interaction and are self-identifying to various degrees. It is an open system, without
clear boundaries or central control.

• These resources are autonomous: they independently created and managed, and their
objectives and terms of service are locally determined. They are established, modified, and
removed from service by local decision. Changes may take effect without notice, even as a
resource is being used.

• The resources may often be used without explicit knowledge, accommodation, commitment,
or agreement of the resource manager.

• The resources are intrinsically heterogeneous: except for minimal standards for protocols,
addresses, and representations, individuals and communities are free to choose their own
representations, protocols, and interface specifications. No single convention or framework
pervades the system. There is, of course, an incentive to use established conventions if you
wish to interact effectively – but this does not preclude introducing new conventions for
good (or even bad) reason.

• The resources do not automatically operate well with each other. Even if their functionality
is compatible, incompatible packagings may preclude easy interoperation. Successful
integration may require the integrator to provide transformation, mediation, or other glue.

In this setting, new opportunities arise for both resource providers and application developers.
Some early examples already suggest the potential:

• Third-party value-added services such as resource authentication, evaluation and review.
Currently in service: certificate services for software downloads such as VeriSign.

• Agents for locating resources with desired capabilities. Currently in service: search engines
for Web content such as Lycos, AltaVista, HotBot and product locators such as Bottom
Dollar, CompareNet, and RoboShopper.

Shaw: Resource Coalitions 11/03/98 3

• Agents that synthesize results from other services. Currently in service: meta-search
engines such as InferenceFind and MetaCrawler.

• Distributed cooperative calculations in which a controlling machine parcels out
subproblems to cooperating processors. Currently in service: large number factoring
coalitions.

• Configuration evaluation services for compatibility, simulation, or performance analysis.
Currently in service: tools for checking for correct versions of system extensions and of
conflicts among them.

Requisite Technology

Assembling and using resource coalitions requires support beyond the usual programming
environment, compiler, and link-loader. Some of the requirements arise from the need to
understand the capabilities of the resources, to select and integrate them, and to validate the
result. Other requirements arise from the open and dynamic character of the computing
environment. Parts of the requisite technology are emerging, but it is not all in place yet.

Metainformation and credentials

Composition of components is currently difficult because it’s hard to determine what
assumptions each component makes about its operating context, let alone whether a set of
components will interoperate well (or at all) and whether their combined functionality is what
you need. Given that this is hard to do manually, you certainly can’t do it automatically. I
previously [Shaw96] introduced the notion of the credential of a component – the part of the
specification that is actually documented, with each term annotated to show at least the
credibility of its source.

Integration and Glue

Many useful resources exist but cannot be smoothly integrated because they make incompatible
assumptions about component interaction – for example, it’s hard to integrate a component
packaged to interact with remote procedure calls with a component packaged to interact
through shared data in a proprietary representation. Some can be integrated, but in irregular
ways (e.g., VeriSign certificates, digital signatures, and digital watermarks accomplish similar
ends, but the content producer and the end user must invoke them in substantially different
ways). Some examples of partial self-typing exist but are not universally observed: file
extensions as used by Windows systems, protocol specifications as part of URLs, conventions
about the text on the first line of a text file. Ockerblooom [Ock98] used such cues in his TOM
system for handling incompatibilities in data representation. The ability to rectify packaging
incompatibility [Shaw95] is critical to the formation of resource coalitions.

Correctness

Traditional closed-form models for correctness must be replaced with models for “good-
enough”-ness. We need a different notion of correctness—one that is incremental, progressive,
and approximate. There are human limitations on the correctness of requirements, especially
understanding the full generality and implications of requirements and solutions.
Specifications can be no better, so it’s not realistic to expect large systems to be fully verified. It
follows that complex systems will require oversight, checking, and recovery. In resource
coalitions, where the individual resources may change or even disappear, the problem is

Shaw: Resource Coalitions 11/03/98 4

particularly intense. We need a new criterion to replace absolute correctness—a criterion that
allows us to bring together various sources of information to establish that a system is
sufficiently good for the task at hand, and to do this analysis at a reasonable cost. Among other
things, this implies a need for policies governing the extent of authority granted to independent
agents

Transience and mutability of resources

Use of web resources is now chiefly opportunistic, and the used resource makes no
commitment to the user. Since the Internet is open and resources are locally managed,
individual resources may appear, change, and disappear independently. A common source of
frustration on the web, for example, is that pages disappear from under links. For resource
coalitions to be useful, consumers and resources must be able to negotiate assurances about
completion of tasks, stability, and availability. Resource coalitions must be able to deal
gracefully with change or transience of the constituent resources. Configuration management
tools, now largely tuned to closed systems, must evolve.

Agent negotiations

Some agents now exist, chiefly for acquiring information (newsbots filter news feeds, web
spiders search out web pages and create indexes for use by search engines). A few shopping
agents exist (e.g., RoboShopper finds web pages listing products you specify), but usually for
identifying product sources rather than for fully-executing the purchase. Some auction sites
allow automatic bidding (e.g., Bidmaker at OnSale.com). This is a good starting point, but the
technology is not ready for unattended operation. Wiederhold’s projections about mediators
[Wie95] suggest a starting point.

Security

Resource coalitions require authentication of identity, privacy of content, and integrity of
certain parts of the resource information. The identity may be a link to a responsible agent, not
necessarily to an identifiable human. Some resources exist, such as digital signatures, digital
watermarks, and certificates for identification and encryption for privacy. However, these
elements are not easy to integrate with other components and may, indeed, require different
forms of integration from one case to another. More detailed security requirements and
appropriate responses to threats will vary from one coalition to another.

Availability is a somewhat lesser concern. Resource coalitions must be relatively resilient to
service interruptions, because of the inherent autonomy of the resources.

Usability by Nonexperts

Spreadsheets, word processors, and the World-Wide Web have brought computing under the
control of individuals who are not professional software developers. A key to this accessibility
is that the software (a) presents a model that is easy to understand, either because it matches a
model that many people already understand or because the model itself is simple and (b) has a
gentle learning curve, so the effort a new user must invest is commensurate with the benefit.
Everyone should be able to bring together a selection of resources that is tailored to his or her
current problem. Resource coalitions don’t yet have simple models, but they do show promise
of a gentle learning curve.

Shaw: Resource Coalitions 11/03/98 5

Micro-accounting and an Open market base

Notwithstanding the enormous community of sharing and support that has been the core of
Internet development, resource coalitions will not be viable for mainstream computation until
all resource contributors can be rewarded. The resources may have different accounting
policies: micropayments, running accounts, and subscriptions, for example. They also need the
ability to charge along different lines from current norms. This requires some sort of micro-
accounting. It also implies authenticated components/properties, agents, 3rd-party sources of
metainformation, and reasonable measures for protecting and rewarding intellectual property

A viable micro-accounting system should provide a fertile climate for third-party value-added
services. These services might provide editorial services in selecting information, evaluation
services for resources, brokering of needs and resources, and so on. Storage, bandwidth, and
compute cycles are free or cheap. Value now resides in information, search/retrieval,
computation, editorial services, evaluations, oversight, credibility, and requirements.

Resource coalitions should thrive best in an open market. Miller and Drexler described such a
market in their work on agoric systems [MiDr88], which anticipated open markets, agents for
identifying resources, and issues of security and trust.

Research Opportunities

Some early examples of resource coalitions already exist. For the most part, they are established
manually and must be operated according to individual, idiosyncratic, usually rigid rules.
Many of the elements for task-specific resource coalitions exist in some primitive form. It’s safe
to anticipate that industry will develop some of the requisite technologies described above. The
development will most likely be rapid but incremental.

How, then, can we identify research problems that will yield results so novel that normal
industrial development will be influenced by them rather than overtaking them?

I think one key is to look for ways to unify numerous special cases, to reduce the chaos of
idiosyncratic incompatible packagings, and to find good solutions to problems such as
correctness and configuration management that are usually ignored – that is, to developed
principled models that handle current cases but are better able to generalize to more
sophisticated cases.

Here are some examples of interesting research problems:

Resource characterization through metainformation: Suppose that we can associate unforgeable tags
with resources by using the World-Wide Web for distribution, <meta> tags for the
metainformation, and digital signatures to ensure the integrity of both the resource and the
metainformation. The set of properties can be open-ended, so new information can be added as
a result of analysis, experience, or manual evaluation. How would this improve our ability to
identify appropriate resources, select those of sufficient quality, and compose them into a
coalition?

Sufficient correctness: What’s the right way to think about whether a resource coalition is good
enough? Given the mutability and transience of resources plus the impracticality of writing a
complete requirement before implementation, the traditional binary criterion for correctness
isn’t adequate. Better would be an oversight model that defined an envelope of acceptable
behavior, monitored the coalition for violations of the envelope, and took corrective action.

Shaw: Resource Coalitions 11/03/98 6

Even better would be a model that scaled the effort of validation the severity of failure and the
degree of manual oversight available. How can we select and apply validation techniques cost-
effectively?

Architectural mismatch: The Internet is riddled with resources whose functionality is tempting
but whose packagings don’t match. What techniques can be used to close the gap?

Configuration management: One of the most severe sources of lost time on modern computers
appears to be encountering inconsistent versions of components. Special programs are
available to clean up some specific types of inconsistency (e.g., conflict catchers), but they aren’t
entirely reliable. The mutability and transience of resources on the Internet make a solution
even more essential. Could improved metainformation allow a breakthrough?

Acknowledgements

These views have emerged over several years and crystallized during my recent term as a
Fellow of the Center for Innovation in Learning at Carnegie Mellon. Previous discussions with
colleagues in the Carnegie Mellon School of Computer Science, especially David Garlan and
other members of the Composable Software Group, have laid the groundwork. Vic Vyssotsky
encouraged me to think about large software as more like city planning than like product
manufacture.

Bibliography

[MiDr88] Mark S. Miller and K. Eric Drexler. “Markets and Computation: Agoric Open
Systems”. In B.A. Huberman (eD), The Ecology of Computation, Elsevier Science Publishers, 1988.

[Ock98] John Ockerbloom. Mediating Among Diverse Data Formats. PhD Thesis, Computer
Science Department, Carnegie Mellon University, 1998.

[Shaw95] Mary Shaw. “Architectural Issues in Software Reuse: It’s not the Functionality, it’s the
Packaging.” Proc. Symposium on Software Reuse 1995.

[Shaw96] Mary Shaw. “Truth vs Knowledge: The Difference Between What a Component Does
and What We Know It Does” Proc. 8th International Workshop on Software Specification and Design,
March 1996.

[Wie95] Gio Wiederhold. Mediation in Information Systems. ACM Computing Surveys. 27(2):265-
267, June 1995.

