
1

Tools for Design Rationale
Documentation in the Development of
a Product Family

J.Savolainen
Helsinki University of Technology
P.O. Box 9700, 02015 HUT, Finland
Tel+358 9 451 5135, Fax+358 9 451 5351
Juha.Savolainen@hut.fi

Abstract
Building a product family is a complex task that requires careful management. To
be successful in this development one has to be able to satisfy requirements for all
the different members of the product family. In order to support this task we
present a unified method integrating two different ways to describe software
architectures. Our approach supports documenting design rationale in a complete
way allowing the design to evolve gracefully. This is achieved by presenting all the
design steps in a design decision tree and simultaneously mapping variation of
system characteristics in a requirement space.

Keywords
Software Architecture, Product Family, Requirement Space, Design Decision

This work is carried out in the ABACI project. ABACI project is a co-operation project between
Helsinki University of Technology and NMP, NRC, NTC and Vaisala. ABACI is supported by Tekes
(Technology Development Centre Finland).

1 INTRODUCTION

Global marketplace has placed companies in a situation where they have to create
products extremely fast. This development should be cost-effective and produce
high quality systems, which poses functionality needed by the customer. However,
the complexity of systems is constantly increasing and the number of product
variations needed to cover the marketplace is high.
 Current research on software engineering has explored possibilities of using
product lines as a tool to achieve organised re-use. Product lines and families have
demonstrated improvements in quality, development cost and time-to-market
attributes. However, the true potential of product lines has not been realised.
 Re-use has been considered as a solution that can help companies to reduce
development time and achieve higher quality. Product families are one of the most
promising re-use techniques. A company that is producing many products which
all share similar properties can structure these systems as members of a product
family. Software doesn’t just happen to be reusable or acceptable for the product
family. Creating a product family requires careful planning, a complete domain
analysis and structured design. None of these tasks is trivial, so there is clear need
for tools supporting this kind of development.
 Design decision trees and requirement space can be used to create product
families. Our approach leads to a structured and organised design, which is easy to
maintain and modify. This method maximises benefits available from the product
family approach by re-using the design of individual members of the product
family.

2 PRESENTING DESING RATIONALE

Requirement analysis and documentation is an important part of designing a
software system. Without a complete analysis process it is just pure luck whether
the system meets customer’s requirements. Demand for the quality of the
requirement analysis process becomes even more important when we are designing
a product family. One must now consider all the requirements of all the members
of the product family.
 Designers need tools to help them during the analysis and design process, and a
method to communicate this knowledge to persons responsible for the evolution of
the system. We propose an approach where two different tools are combined to
provide support for the whole software lifecycle. In the following chapters we
present these tools and discuss how they can be used to help designers and
maintenance personnel.

2.1 Design Decision Trees

We use Design Decision Trees (DDT) to incrementally document, refine, organise
and reuse knowledge for software design. Design Decision Tree is a partial

ordering of design decisions put in the context of incrementally specified problem
requirements and the constraints imposed by earlier decision [Ran & Kuusela,
1996]. Each node of DDT documents a design decision and rationale for it. Arcs
between the nodes reflect the dependency between the decisions. This dependency
provides us a way to relate developer’s decisions to original requirements.

2.2 Requirement Space

In real software projects there is a lot of pressure put on a developer. The developer
should be able to satisfy strict time deadlines in addition of many functional and
non-functional requirements. However, there are always much more requirements
than any single software project can manage. There is a clear need for prioritisation
among the requirements. In our product line development project we have used a
cost-value approach for prioritising requirements [Karlsson, 1997].
 We propose a simplified notation to capture all the requirements for a product
family. The approach is based on an idea of pair-wise requirements comparison. A
requirement is represented as a line of variation, where the total variation is a sum
of the requirement variation of all current and planned members of a product
family. The line shows total variation of a value respect to the requirement. Pair-
wise variation comparison is a pleasant way to represent requirements for the
product line to be developed.
 Variance is represented as an area, not as a point. The area represents a place
where the properties of final designs would lay if every branch of the DDT after
the current decision would be implemented. The area of the decision is the range of
functionality where different designs cluster on the requirement space. This
unpredictability comes from using patterns to describe DDT nodes; there are still
many ways to implement a system. In our approach we make more general
decisions first, causing the area in the requirement space to decrease after every
decision.
 The visualisation of variance is important for the development of the product
family. Variance in a requirement represents a dimension, which the product
family must support. In the product family there has to be enough flexibility in
respect to this dimension. Developing a framework for the product family requires
knowledge of what is going to be changed during the system’s lifecycle.
 Variability can be supported be enabling flexibility for the dimension. Our
process can handle only planned variance – the variance that can be predicted
during the design of the product family. However, it should be noted that in our
approach, ordering design decision in a way that more general decisions are taken
first maintains maximum flexibility in respect to important requirements. But in
any case, if a completely new requirement emerges, there is no way to support such
variance.

3 SUPPORTING PRODUCT FAMILY DEVELOPMENT

A lot of work is done on a software product after it is deployed. It is a major
requirement to have a design that supports effective maintenance. In our approach
we are addressing two major issues in the software lifecycle – evolution and
maintenance. Successful product line approach requires that design rationale be
presented in an easily accessible way. This rational is essential to provide context
for a maintenance engineer who is responsible for a system’s evolution. He needs
to understand the design decisions and all the constraints associated with the
product line architecture.
 The product line architecture is derived from requirements in its domain. To
allow adequate support for evolution, we must describe the architecture and also
the reasons for making the architectural design decisions. A solution must also
model the requirements in a way that each architectural decision can be derived
from the requirements. The effect of the decision can be seen in some way
reflected in the functionality of the system and also as a partial fulfilment of the
original requirement.
 Our work provides just that. Documenting a design in a design decision tree
allows a structured presentation of design information. On the other hand, the
requirement space captures all the requirements for a system and allows a
visualisation of these requirements. This method also shows the effect of a single
decision on the functionality of the system.
 In our model we assume that all the decisions are taken one after another in a
way that more general design decisions are made first. Now we have incrementally
specified decisions, which relate directly to incrementally specified functionality.
This functionality becomes more defined in every design cycle and approaches the
original requirements of the system. This continuous, incremental specialisation is
documented in a way that can be easily accessed by maintenance engineers.
 Visualisation of how the functionality of the system approaches the original
requirement in respect of the design decisions made during the development of the
system has a great value. Producing a new member of the product family becomes
a task of finding a branch in the DDT that satisfies the requirements associated
with the system. An automated visual builder that allows generating products from
its specification can support this process if systems are in the range of common
properties of the product family. This approach has been used in a case of
framework design [Roberts & Johnson, 1996].
 The common requirements of the product family give limits to the modifiability
of the system. If requirements that do not fit into these limits emerge, then we may
have to redesign the common framework.

4 WEATHER STATION CASE STUDY

The common requirements of a product family define the core functionality for our
framework. These requirements are common assumptions shared by members of
the product family, so we can start our development process of the framework by
incrementally satisfying these common requirements.
 Consider a measurement collecting and processing equipment such as a weather
station. Weather stations run on various hardware and operating system platforms.
They perform numerous calculations and broadcast different kinds of reports to
various terminals by a serial cable or via a satellite link. Due to the nature of
weather observation domain there are multiple products needed to cover the market
place. There are different user demands and regulations, which must be included in
the product functionality. In this kind of environment high adaptability to various
hardware platforms is a key requirement. Also high performance must be achieved
using only limited hardware resources. Simple requirement space is shown in
figure 1.

Figure 1 A requirement space for the weather station

 There are two common methods to create the framework for a product family.
The first method produces a framework that is a sum of all variance associated
with planned product family. However, this creates a kind of framework that often
cannot evolve because both the common properties and the variance are included
into the framework. The second method includes only the common partition of the
product family in the framework and uses separate components to support the
variance among the members of the product family. This allows new products to be
included in the product family if they share the same common assumptions.
However, this will use only a portion of the total re-use potential. Often members
of the product family can be divided into groups, which have similar properties.
When we encapsulate variance into separate components it’s complicated to re-use
design because we cannot use the component as it is. By using design decision
trees and requirement spaces we can support also this kind of re-use by
documenting the decisions made during the component design phase.

Reusability:
Person months

X

Performance: events / sec

Figure 2 Design decision tree for the common framework of the weather station

Figure 2 shows the design decision tree of the weather station product family. It
displays only the common portion of the framework. However, similar process can
be used to create a new product family member. If we have documented every
product family member in our DDT, we can use similar process to create a new
product. Using the requirement space we can directly see, which existing family
member has most similar requirements.

Microkernel

Functionality partition

Needs performance
Adaptable design

Reusable
system

Monolith

One application

Easy to implement
Hard to maintain

Fast
system

Repository

Tools use same data

Needs performance
Tight coupling

Configurable
system

Multiple layers

Directional dependency

Needs performance
Highly portable

Reusable
system

Sea of objects

Fully encapsulated

Easy to implement
Fat interfaces

Fast
system

Open-layered

Uses any lower layers

Optimization possible
Tighter coupling

Fast
system

Closed-layered

Uses next layer

Needs performance
Highly portable

Reusable
system

Now a developer can start a design process by tracing design decisions backward
from the leaf node of the similar product towards to the root of the DDT. He
continues upward until enough flexibility is gained to satisfy the requirements of
the new system. In this way we can achieve re-use also outside the boundaries of
the common framework, by re-using also design of one product family member.
Figure 3 displays the requirement space describing the DDT shown previously.

Figure 3 The requirement space for the weather station

X

Repository

X

Microkernel

X

Monolith

X

Sea of objects

X

Multiple layers

Closed-layered

X

Open-layered

X

5 RELATED WORK

When designing a software system, satisfying requirements is crucial for the
success of the project. Representing design requirements in some way is done in
almost every project. Many authors have used the idea of requirement comparison
and some have also visualised results by plotting them on a plane.
 Lane has used a design space to organise and capture design knowledge by
identifying functional and structural choices [1990a]. Capturing functional
requirements and creating design rules based on them can be used to help designers
to develop software systems that will meet user’s functional requirements. The
process of finding correlation between different design space dimensions relays on
experience gained during a complete analysis of the application domain. Lane has
used this approach for user interface software architectures [1990b].
 Alonso and colleagues have proposed a framework solution for documenting
design decisions in product family development [1997].
 Product families have been designed using domain analysis to find out
commonality and variability of the product family. A good example of this
approach is a commonality analysis method (FAST) by Ardis and Weiss [1997].
The FAST method’s commonality analysis gathers all the assumptions true for the
product family members and, on the other hand, explore possible ways that those
members can vary.

6 CONCLUSIONS

A complete documentation of design decisions and their effects on the system
under development is essential for the maintenance and evolution. Design decision
trees and requirement spaces can be used to document this information and
communicate it between designers and persons responsible for the maintenance of
the system. Having a link from the requirements to the design and implementation
increases maintainability and possibilities of reuse.
 Requirement spaces can be also used when a developer creates a new system as a
product family member. Variance visualisation helps product family development
by assuring that the framework can support planned variance. This method allows
design re-use between product family members and makes creating new member a
much simpler task. In this way, we can achieve a structured and organised design,
which is easy to maintain and change, while maximising re-use.

7 REFERENCES

Alonso, A., Leon, G., Duenas, J. and Puente, J. (1997) Framework for
Documenting Desing Decisions in Product Families Development.
Proceedings of 3rd IEEE International Conference on Engineering of Complex
Computer Systems, Como, Italy 1997, 206-212

Ardis, M. and Weiss, D. (1997) Defining Families: The Commonality Analysis, in
Proceedings of the Nineteenth International Conference on Software
Engineering, May 1997, 649-650

Lane, T. (1990a) Studying Software Architecture Through Design Spaces and
Rules. Technical Report CMU/SEI-90-TR-18, Carnegie Mellon University
Software Engineering Institute, October 1990

Lane, T. (1990b) A Design Space and Design Rules for User Interface Software
Architecture. Technical Report CMU/SEI-90-TR-22, Carnegie Mellon
University Software Engineering Institute, November 1990

Karlsson, J. and Ryan, K. (1997) A Cost-Value Approach for Prioritizing
Requirements. IEEE Software, IEEE, September-October 1997, 67-74.

Ran, A. and Kuusela, J. (1996) Design Decision Trees. Proceedings IWSSD-8,
IEEE, 1996, 172-175.

Roberts, D. and Johnson, R. (1996) Evolve Frameworks into Domain-Specific
Languages. Pattern Languages of Program Design 2 (ed. Vlissides, J.,
Coplien, J. and Kerth, N.) Addison-Wesley, USA, 1996, 93-103.

