
1

Differentiating requirement types
from instances: architectural thinking
as a pre-design activity

R. Ramaswamy

Infosys Technologies Limited

3rd Cross, Electronics City, Bangalore 561 229, India
Ph: +91 80 852 0261 Fax: +91 80 852 0362
e-mail: ramkumarr@inf.com

Abstract

The success of an OO project hinges on the integrity of its OO architecture. How
sure can one be that a proposed object model is sound and will not change
structurally as requirements are ‘fleshed in’ during development? This question
becomes particularly critical in a software reengineering/redesign scenario in
which business rules may already be known and documented in some detail, so
that the development team is expected to transition into design and implementation
even before current business functionality is comprehensively understood. In such
a scenario, thinking of software architecture as a design activity may not be
entirely appropriate. In this paper we address the above issue by showing how the
use of a simple but highly effective and shop-usable approach to understanding and
abstracting a set of requirements leads to crucial early insights on OO architecture.
We thus argue that architectural thinking can begin in a natural way during
requirements specification. As a corollary, the approach also injects much-needed
clarity into the definition of what must constitute an initial executable
‘architectural slice’. While our approach is described in an OO context, the
underlying ideas are easily seen to be applicable in more general situations.

2

Keywords

Object-oriented architecture, requirements specification, software
reengineering

1 INTRODUCTION

Software architecture is viewed as one of the levels in software design (Shaw and
Garlan, 1996). Specifically, it is viewed as the manifestation of the earliest design
decisions about a system (Bass et. al., 1998). In particular, an object-oriented
architecture–consisting of a set of classes and a specification of their
collaborations–embodies crucial structural decisions and has sweeping
implications for detailed design, implementation and testing (Booch, 1996). The
activity of object modeling of course, begins during requirements specification, but
the objects identified at that stage are usually logical in nature, corresponding to
entity objects (see (Jacobson et. al., 1992) for a discussion of entity, interface and
control objects). This yields a logical object model (LOM), which is structurally
not very different from the traditional data model (see, e.g., (Reingruber and
Gregory, 1994)). The LOM undergoes changes during architectural design–new
objects may be added for control and interface, and existing ones may be split,
combined or reorganized. The resulting object model is the design or physical
object model (POM), and this is what drives detailed design and implementation.
The POM represents key decisions on object structure and collaboration. For this
reason, it is important to minimize structural changes to the POM once detailed
design has begun.

 It is particularly interesting to examine the forces that influence the requirements
specification (RS) and design activities in a reengineering/redesign scenario. Such
a scenario typically involves redesigning a chunk of an existing application (using,
say, OO techniques) without significant change to existing functionality. Such an
exercise is usually conducted to make the system more modular and flexible for
maintenance and future enhancements. To the extent that business rules are
documented in some detail, RS in such a context is reduced to a short systems
study, constituting a relatively small proportion of total effort. Further, the
development team is–perhaps unreasonably–expected to transition into design and
implementation as soon as business functionality is ‘broadly understood.’ This
forces the team to begin design without a comprehensive understanding of business
rules, and consequently reduces the scope for evaluating and closing out on
architectural options early during design. There is thus the apprehension that
complex business rules lurking in some dark corners of the current system will,
when excavated, upset the apple cart by requiring structural readjustment of the
object model.

 How must such a situation be handled? Specifically, we ask the following
questions. What constitutes a ‘broad understanding’ of business requirements?

3

How early can ‘architectural thinking’ begin? How sure can one be that there will
not be turbulent changes to the OO architecture once detailed design has
commenced and requirements and business rules are excavated and ‘fleshed in’?
We address these questions in the next section

2 REQUIREMENT TYPES AND INSTANCES

Consider the following passage which is an edited extract from an actual business
rules document that we encountered, and appears to be written well enough to not
require significant rewriting. (In the interest of brevity, we have provided a
relatively simple though sufficiently illustrative example.)

AB0090032 Batch file description
This batch file will be received by the system once a day. Each batch file will
contain about 300,000 records. Information in this file must be validated before the
contents are stored in the database. Each record is composed of 30-43 fields
containing detailed information about a credit card transaction. Some key
descriptions are reproduced below:

1. The cardType field in each record must be Visa, MasterCard, Amex or
Discover. This type must correspond with the txnType field in the same record;
a '1' indicates Visa or MasterCard, and a '2' indicates otherwise.

2. The accountNumber for each transaction must have exactly 16 digits; in
addition, the first 2 digits must be '55', ‘56', ‘65' or '66'.

3. The value of the NumRec field in the batch header record equals the number of
records in the batch. Similarly, the TotVal field in the batch trailer record equals
the sum of transaction values of all records in the batch. Sometimes there is a
discrepancy, and if there is, an alarm must be raised.

4. If there is a transaction with IndType equal to 'UY', (indicating a hotel check-in),
and another transaction with IndType equal to 'RU' in the same batch with the
same account number, the txnQualifier in the two records must match.

 We provided this passage as a sample extract of the documentation for a current
system to a group of a dozen analysts, and asked them how they would proceed to
assimilate its contents. Specifically, we invited opinions on whether they felt there
was a need to edit, reorganize or summarize this extract in any way. One or two
analysts felt that the document could be left as-is, while the rest felt they would
like to add on various summary statements that typically read as follows:

There are 4 card types.

The system deals with only those account numbers that begin with certain
prespecified values.

An alarm is raised if there is any discrepancy in the batch header or trailer

 When interrogated, the analysts were unable to provide concrete justification for
providing these summaries apart from ‘Summarization helps me get the big
picture’. There was unanimity in the view that the summary itself would serve little

4

purpose once the requirements had been ‘broadly understood’ and the systems
study phase was completed.

 The notion of a requirement type lends sharper meaning to the phrases ‘broad
understanding’ and ‘big picture’. It focuses on identifying distinct responsibilities
that need to be assigned to components in the OO architecture. (As we will see,
this approach is analogous to data modeling, in which we focus on capturing entity
types, rather than instances, during requirements specification and database
design.) Consider the following summary of the above requirements extract.

There are three kinds of field validations:

Local validations, which verify that the given field belongs to an admissible domain

Intra-record validations, which verify that a given field’s value is consistent with the
value of other fields within the same record.

Inter-record validations, which verify that a given field’s value is consistent with the
value of fields in other records within the batch

 This summary is qualitatively different from the earlier ones. It clearly identifies
three types of validations (local, intra-record and inter-record), without spelling out
any instances of these three types. For example, the rules about admissible values
of card type as well as the rules about admissible values for account number may
be viewed as instances of local validation. Similarly, the correspondence rules
between card type and transaction type are instances of intra-record validation.
How does this help? Different requirement types may need to be architected for
differently (e.g., may require a different architectural policy or style), but multiple
instances of a requirement type can be expected to be handled using the same
policy (or very minor variations of the policy). This allows us to ignore multiple
instances of each identified requirement type during RS; it is more important to
focus on identifying as many requirement types as we can.

 This approach achieves two objectives. One, it aids architectural decisions by
bringing into sharp focus the spectrum of responsibilities embodied in the different
requirement types. Two, it allows an analyst conducting a requirements study in a
reengineering/redesign scenario to manage and time the transition into design,
without being fully conversant with the body of current business rules.

 To complete the illustration, let us return to the example passage above. Suppose
we have classes Record and Batch (amongst others such as subclasses of Record)
to hold, validate and store information in an incoming batch file. How would the
three types of validations be handled by these classes? Typically, local validation
of a field will be handled during object construction by a set() method on the
appropriate class (in this case the appropriate subclass of Record) that contains the
field as an attribute. Intra-record validation is also handled by the appropriate set()
method during object construction: for example, setCardType() will check the
value of the txnType attribute (assumed to have already been populated) before
populating the value of cardType. Finally, inter-record validation can be handled

5

by the Batch class: each time an instance of Record is added to a Batch using the
method Batch::addRecord(), its consistency with other objects already within
Batch is checked within the method.

 One of the important themes in software engineering is the separation of analysis
and design concerns. For example, the notion of ‘system essence’ (McMenamin
and Palmer, 1984) was mooted as a technique to ensure that a requirements
specification does not get ‘polluted’ by decisions that reflect constraints imposed
by implementation technology. The key to specifying requirements essence is to
ask, ‘Are there requirements that would cease to exist if I had perfect technology
available to implement the system?’ In a redesign/reengineering scenario, we
would ask the same question with reference to the chunk of the system being
reengineered (and which is within one’s control). Clearly, the distinction between
requirement types and requirement instances is independent of implementation
technology. This means that the act of distinguishing between the two may
legitimately belong to the RS phase, which implies that the process of architectural
thinking can begin naturally during requirements specification.

 A caveat, however is in order: our experience has shown that focusing on
requirement types does lead to a temptation to cross the boundary and move deeper
into ‘nonessential’ (in the sense defined above) architectural decision-making that
should properly be done after RS. It is important to resist this temptation.

3 COROLLARIES

The articulation of requirement types throws up an unexpected benefit during
incremental integration and testing. A crucial step in system development is the
verification of an architecture by taking an executable slice through it. An
executable slice ‘carries out some or all of the behavior of a few interesting
scenarios chosen from the analysis phase,’ and ‘should provide partial
implementation for the entire domain model (Booch, 1996).’ If the dominant risks
to the project are technological, a vertical slice is recommended, while a horizontal
slice is recommended if the dominant risks involve the logic of the system. In a
complex business application such as one involving card transaction processing
and settlement, a horizontal slice may be preferred. However, it is common to find
developers arguing about what exactly should constitute this slice. Words such as
‘interesting’ and ‘partial implementation’ are usually too ambiguous and subjective
to be shop-usable as-is. The notion of requirement types makes the answer
relatively easy: take one instance of each requirement type and wire these together
to create an executable slice. In the example passage above, we could implement
clause #1 (one instance each of local and intra-record validation), along with the
validation of the NumRec field in the batch trailer record (inter-record validation).
This sets up a well-defined end-to-end processing sequence early in the game.
Fleshing in the rest of the application then becomes a matter of adding in the
remaining instances in an incremental manner.

6

 Finally, the focus on capturing requirement types and excluding requirement
instances is extremely useful in defining and monitoring the scope, milestones and
deliverables of the RS phase in a reengineering/redesign scenario, in which there is
often some pressure on the analyst to produce tangible output as evidence of
sufficient understanding of the current system! This is small but important
consideration from a practitioner’s point of view.

4 SUMMARY AND CONCLUSION

In this paper, we have addressed the issue of architectural stability of the POM
with special reference to a reengineering/OO redesign scenario. We have argued
that thinking of software architecture as a design activity may not be entirely
appropriate in such a scenario, due to the expectation that the team will begin
design and implementation without a comprehensive understanding of business
functionality. We have shown how focusing on requirement types helps the analyst
drive key architectural decisions in a natural way during requirements specification
without compromising on the principle of system essence. The focus on
requirement types also helps the analyst manage and time the early transition into
design despite not having a comprehensive understanding of business
functionality. Finally, we have argued that the approach injects much-needed
clarity into the definition of an executable ‘architectural slice’. Our approach has
evolved out of OO projects, but it is clear that the underlying ideas have broader
applicability. Our experience has proven it a simple idea with a tremendous return
on investment.

6 REFERENCES

Bass L., Clements P. and Kazman R. (1998) Software Architecture in Practice.
Addison-Wesley Longman, MA.

Booch, G. (1996) Object Solutions. Managing the Object-Oriented Project.
Addison-Wesley, MA.

Jacobson I., Christerson M., Jonsson P. and Overgaard G. (1992) Object-Oriented
Software Engineering. Addison-Wesley, MA.

McMenamin S. J. and Palmer J. F. (1984) Essential Systems Analysis. Prentice-
Hall, NJ.

Reingruber M. C. and Gregory W. W. (1994) The Data Modeling Handbook. A
Best-Practice Approach to Building Quality Data Models. John Wiley, NY.

Shaw M. and Garlan D. (1996) Software Architecture. Perspectives on an
Emerging Discipline. Prentice-Hall, NJ.

7 BIOGRAPHY

Ramkumar Ramaswamy received a PhD in Operations Research and Systems
Analysis from the Indian Institute of Management, Calcutta, in 1994. He is
currently an associate project manager at Infosys Technologies Limited. His
interests include software architecture, methodologies for systems analysis and
design and algorithms for combinatorial optimization.

