
WISCAI Conference 1
© 1998 IFIP. Published by Chapman & Hall

1

Information and Software Systems:
from Architecture to Urbanism
Desreumaux, Marc
EDF Production Transport
Information Systems Department
1, Place Pleyel
F93207 Saint-Denis, France
Phone: +33-1-43 69 35 59
marc.desreumaux@edfgdf.fr

Oudrhiri, Radouane
3H Technology
3030 Clarendon Blvd, Suite 320,
Arlington, VA 22201, USA
phone: +1-(703) 90 80 844
fax: +1-(703) 90 80 845
roudrhiri@threeht.com

Abstract
Structured architecture would improve the systems quality by establishing

discipline, but does not account of their evolution. We need to go beyond by
discovering and using the hidden laws of urbanism that are intimately tied to
autonomy, adaptation and evolution notions.

Keywords
Urbanism, architecture, interfaces, adaptative systems, evolving systems

1. INTRODUCTION
The speed of adaptation and the control of evolution of software systems are

primary determinants for the organizations’ competitiveness. Unfortunately,
information and software systems are neither adaptable, nor evolving. The
software meets —or does not meet—precise requirements. Hence, we attend to a
logic of “everything” or “nothing”.

Software is never an isolated system. It is constrained by its users, the other
systems that interoperate with and the infrastructure on which it runs. It is not
protected from changes. Software systems are built on the constraints of the
past, in order to be used in the present, and generate constraints for the
future.

Will it be possible to ease the desirable changes and to avoid the undesirable
and unexpected ones?

WISCAI Conference 2
© 1998 IFIP. Published by Chapman & Hall

2. FROM INTUITIVE TO STRUCTURED ARCHITECTURE
Classically, “architecture” designates the systems’ composition, their

organization and the process of organizing; the art (process), the result
(deliverable) and the style.

 Building an architecture is still an ad hoc process and not yet a science, based
on the architect’s intuition and experience. The characteristic much sought-after is
the efficiency with multiple facets: universality of the utilization field,
performance, ease of use, cost, etc.

A first improvement consists in introducing a structured architecture that
defines categories of components and their typical assembling rules. The benefits
of this improvement are equivalent to the benefits gained by the shift from
intuitive to structured programming: more discipline in the process (Dijkstra
1976).

 However, the structured architecture foresees only few on the evolveability
of the system. Currently, the architecture process becomes equivalent to an
assembling game based on “constructibles”: e.g., Lego® toys. The basic
components are real or virtual machines, where the majority of them are equivalent
to a von Neumann machine.

 There are three fundamental composition laws. (Bass, 1998) provides a set of
composition laws called Unit Operations. For us, the three basic ones are:

• The Nesting operation: stacking a machine on another one. The stacked
machine becomes a sort of language, interpreted by the other one. Concrete
examples are Windows® stacked upon DOS®; stacked on the machine,
stacked on the CU; etc.

• Memory sharing. The same data shared among multiple machines.
• Communication. Typically reduced to the message passing.

Each architectural construction may be described by the basic components and
the assembling operators (nesting, memory sharing and message passing). The
assembling of architectural constructions gives rise to a new architectural
construction.

Communication plays an important role for the system flexibility. It is the basis
of system’s articulations. The higher the flexibility of the articulations, the
more adaptable the system becomes. Unfortunately, this is not the case of our
current systems.

Fundamentally, the structural approach does not change the systems’ ability to
evolve. The obtained systems are very structural. The majority of existing
information systems are monolithic and centralized. In spite of the system’s
parallelism, the system behaves sequentially. For example, the current PCs have
parallel processors but the software and OS are still sequential; existing
information systems run thousands of inter-connected machines, but most of
processes (essentially administrative ones) are performed sequentially.

The effective computability has not changed. May be we gained in terms of
instantaneous performance, but not in terms of effective computability. This

WISCAI Conference 3
© 1998 IFIP. Published by Chapman & Hall

structural approach assumes a predefined modeling of the real world. Thus it
suffers from a lack of adaptation and evolution.

3. PUTTING MORE RIGOR IN THE INTERFACES

4.1 Autonomous systems

Autonomy is the chief property of architectural components interacting within
an adaptable information system. Autonomy is a property assigned normally to
biological and human systems (Varela 1979) (Lorigny 1992). It is considered here
—schematically— as the ability to continue fulfilling its functions and to hold out
within a changing environment.

In order to be autonomous, a system must have a boundary, which delimits
and separates its inside from the outside. It is also an area of exchanges between
the inside and the environment. The autonomous system owns and maintains
internal resources in reserve. These resources are consumed or exchanged by the
system with its environment, allowing it to fulfill its functions, and to adapt itself
to the environment hazards.

From the informational standpoint, a software component exchanges resources
that are data. The boundary that isolates it from the environment and which allows
it to perform exchanges is the presentation layer. The mechanism that transforms,
somewhat, the internal data into released information to outside on one hand, and
that controls the information coming from outside and transforms them into
internal resources, on the other hand, is the processing layer.

The structure of an autonomous component presents an analogy with the
structure of a living cell.

4.2 Communication between autonomous systems

Communications between the autonomous components correspond to the
exchanges of information that are performed through mutual presentations. The
presentation of information is characterized by:

• the information content (the series of significant digits),
• its syntactic structure,
• its morphologic code (the way each digit is coded, generally depending on

the medium),
• the support (medium),
• the rhythm, or more generally the periods of time within the component

sends or receives.
The physical transport along the medium within space and time, has effect of

transferring informational content when it is “aware” of its morpho-syntactic
structure. Of course, this transfer of informational content handled by media has
the objective of transferring the significance.

WISCAI Conference 4
© 1998 IFIP. Published by Chapman & Hall

zero
zero
zero
zero
zero
zero
zero
zero
zero
zero
zero
zero

zero
zero
zero
zero
zero
zero
zero
zero
zero
zero
zero
zero

zero
zero
zero
zero
zero
zero
zero
zero
zero
zero
zero
zero

zero
zero
zero
zero
zero
zero
zero
zero
zero
zero
zero
zero

zero
zero
zero
zerozero

zero
zero
zero

zero
zero
zero
zero
zero
zero
zero
zero
zero
zero
zero
zero

zero
zero
zero

zero
zero
zero
zero
zero
zero
zero
zero
zero
zero
zero
zero

zero
zero
zero
zero
zero
zero
zero
zero
zero
zero
zero
zero

zero
zero
zero
zero
zero
zero
zero
zero
zero
zero
zero
zero

zero
zero
zero

zero
zero
zero
zero
zero
zero
zero
zero
zero
zero
zero
zero

zero
zero
zero

zero
zero
zero

zero
zero
zero

zero
zero
zero

zero
zero
zero
zero
zero
zero
zero
zero
zero
zero
zero
zero

zero
zero
zero

Figure 1: A message does not transport only a single significance, but several ones
that are interpreted by the corespondents relatively to their scales of coding-
decoding.

Communication between autonomous systems present a strong nested and
quasi-fractal nature (Nottale, 1993). The Figure 2 hereafter, presents an example
of dialogues between two corespondents. The context of the first correspondent is
a paper manufacturer who wants to order 100 paper pencils, at the unit price of $6,
taxes included. The second corespondent is a cosmetic salesman, selling make-up
pencils at a unit price of $30, taxes excluded, and receives a purchase order of 100
pencils.

Boss: Buy 100
pencils

Purchasing
Dept.

fax-1

Incident!

Customer

Supplier

Sales
 Dept.

100 pencils
 at $6

fax-2

Our pencils
cost $30 each

paper manufacturer
paper pencils
price with taxes

Cosmetic salesman
make-up pencils
price without taxes

customer
order

Customer

supplier
order

Supplier
Sales
Dept.

Purchasing
Dept.

Fax.Fax.

100
pencils

$6

100
pencils

$30

2
pg.

line 1
pg.

Supplier contextCustomer context

Sales Dept. contextPurchase Dept. context

Fax-2 contextFax-1 context

Ph-1

Ph-2

Figure 2: An example of communication between two corespondents using a
chain of intermediaries

WISCAI Conference 5
© 1998 IFIP. Published by Chapman & Hall

The correspondents use different intermediaries to communicate: components,
actors, organizations, processes, etc. Each one has its proper context, medium,
rhythm, and scale. The contexts are nested. The Purchasing Department’s context
could not be understood only within the customer’s context, and so on. At the
same time the Boss uses the Purchasing Department as a medium. The scaling
mechanism plays an important role within the interpretation process.

4.3 Necessity of more rigorous engineering of communications
inter-autonomous systems

The technology and engineering of communication inter-autonomous systems
are not as formalized as, for example, those of the databases or even the user-
interfaces. However, the difficulties of software and information systems are found
nowadays more at the interfaces than the databases!

The interfaces represent articulations between the system components. If
components are not autonomous, or if articulations are too rigid, the system cannot
be flexible. This is a real problem for enterprises, not only a question of
technology. The enterprises’ merge, acquisition require connecting information
systems that were independent before, or separating them. The exchanges between
enterprises and their external partners are more performed automatically and
formalized. The work is changing: individuals are asked to cooperate and to
increase synergy. We attend to more jobs' professionalization by structuring the
exchanges between them. The exchanges of information are becoming more
formal and dematerialized.

In order to illustrate this, consider a supplies and stocks management activity
within an enterprise. When this activity is “autonomized”, it forms an interface
between the consumers and the suppliers, and hence increases the consumers’
autonomy relatively to the suppliers. Stocks are a representation of the shift
introduced between demand and supply, expressed on three aspects:

• The time: a difference between a demand and the order corresponding to the
stock level.

• The space: the stock represents the space-buffer.
• The scale: we may buy wholesale what could be consumed in retail.

The supplies and stocks management activity reconciles different points of
view with different scales. This autonomy increases the enterprise reactivity, which
takes the opportunity of realizing some non-planned activities, while the
Purchasing Department may allow rules of competition to operate. There is then, at
the same time, a local and global optimization.

Interfaces between components represent this type of articulation in space,
time, scale, and information coding means. Standardized engineering practices,
able to build them and to make them evolve are certainly within our range
(Desreumaux, 1995).

WISCAI Conference 6
© 1998 IFIP. Published by Chapman & Hall

4. FROM ARCHITECTURE TO URBANISM

5.1 Management practices of large software-intensive systems

Some large companies and organizations in France (banks, insurance, energy,
telecommunications, etc) put in place a process called urbanism of information
systems, which encompasses several activities such as:

• Standardizing architectures.
• Promoting high level communication services, e.g. middleware.
• Separating the purely applicative software systems from the software

infrastructure.
• Purchasing and integrating COTS rather than building new ones.
• Structuring systems logically.
• Planning the previous evolutions.
• Maintaining a cartography of software systems, information flows, business

processes.
• Organizing information systems processes in order to facilitate and to

promote reuse.
This pragmatic know-how allows effectively, with intuition and energy, to

increase the control of large software-intensive systems. But, a more rigorous
mechanism that may allow understanding the phenomena in order to better react
on them, could not exist?

Some first elements of the answer derive from the analogy that we could make
with the large sets of habitations. The word “architecture” has already been
borrowed from this field, when it comes to erecting a building or a software
component. Could we pursue the analogy when it comes to understanding the
evolution laws of large sets of software components?

5.2 Cities Urbanism

The origin of the words family “urbanism” is very interesting.
The French word “urbanité”, urbanity, appears in 1370, from Latin urbanitas,

meaning “from city, having the characteristic way of life of city dwellers”.
Urbanity: 1. Refinement and elegance of manner; polished courtesy 2. Urban life.

In 1867, Cerda, a Spanish engineer published “teoria de la urbanización”.
Urbanización designates 1. The process of space arrangement, planned or not. 2.
The underlying laws.

The job of the “urbanizador” is to discover hidden and unconscious laws, in
order to understand and to use them, knowingly, for conception and arrangement
of constructed spaces.

In France, since 1873, urbaniser, urbanizing, means: get someone to accept
the urbanity. The word urbanisme, (urbanism) appears since 1910, in order to
designate: 1. The science of urbanity. 2. The study of methods allowing to adapt
the urban habitat to the person’s needs. 3. The set of techniques for applying these
methods.

WISCAI Conference 7
© 1998 IFIP. Published by Chapman & Hall

Fundamentally, the architecture refers to a construction, whereas the urbanism
refers to an evolution. The concept “architecture” is closed around the edifice, its
structure and its style, whereas “urbanism” is open on environment, person’s needs
and necessity of the mannerliness within a society. Each edifice has to be
integrated among other edifices, with urbanity.

5.3 The Urbanism of large information and software-intensive
systems

For information systems, “urbanity” would mean their ability to fulfill their
functions, to hold out and to fit in within a changing environment. The
environment is composed from a set of human, software and hardware systems
that interoperate with the system, and which are themselves in interaction.
Urbanity and autonomy are thus intimately tied. In some way, the urbanity of
information systems would mean their ability “to live in a society”.

From the beginning, urbanism integrate description of space, social, economic,
political, cultural dimensions. Later environmental and ecological dimensions. The
role of communications is up-front of a considerable importance.

We find again the same characteristics and fundamental problematics within
the urbanism of information systems: change from planned and individual
construction to evolution of collective space, consideration of legacy systems,
multi-disciplinarity, environmental protection, determinant role of
communications.

5.4 Large networks of components

There is no simple relationship between the laws underlying two sand seeds
and a sand heap; between Brownian interactions of some molecules, and the gas
properties. Observation of chemical communications between ants does not allow
to predict ant's nest organization. The understanding of a dialogue between two
humans explains poorly the crowds’ behavior. The nerve exchanges impulse
within the synapses of some neurons do not account for all the mind and thought
complexity.

There is, almost always, a quantum leap in quality between the interactions
among some individuals and the global behavior of a large collection: changing
from order to disorder, or vice versa, or from an order to another order.

This qualitative leap may be found (again) within systems comprising a large
number of components, like large information systems. Each software component
is individually programmed, under control, sensitive to the least change within its
environment and therefore not very evolving, it becomes “hard”. In the opposite,
the entire system is not programmed, has unexpected behaviors and even
unpredictable, and stays “soft” relatively to changes. The entire system has some
adaptation abilities, and we can observe its evolution.

Structural assembling components is a matter of architecture. However, the
assembling of large number of components provides other results, qualitatively

WISCAI Conference 8
© 1998 IFIP. Published by Chapman & Hall

different. The underlying laws of large system communities are not simply
deduced from the assembling laws of architectures. The urbanism: discovery and
usage of behavioral, adaptation and evolution laws of large collections cannot be
structuraly described.

A solution to approach this laws will be the construction of models such as
mesh automata. (Weisbuch, 1989) (Rumelhart, 1989) provide a large class of these
models. Many of them demonstrate flexibility, adaptability, fault-tolerance,
learning abilities. But they are not directly “programmable”, and their behavioral
laws are sometimes counter-intuitive. They are not very predictable.

They allow understanding what could mean “controlling” large system
collections. A system cannot be known and programmed in the least details, on
one hand like the von Neumann machine, and on the other hand be permanently
adaptative to the environment hazards.

5. REFERENCES
Bass L., Clements P., Kazman Rick (1998) Software Architecture in Practice,

Addison-Wesley.
Desreumaux M., Oudrhiri R. (1995). "Systèmes d'Information et Interfaces". 2ème

Congrès Biennal de l'AFCET, 25-27 octobre, Toulouse.
Dijkstra E.W. (1976). A discipline of programming, Prentice Hall.
Lorigny J. (1992). Les systèmes autonomes, Relations aléatoire et sciences de

l'esprit, Dunod-AFCET, Paris.
Nottale L. (1993). FRACTAL SPACE-TIME AND MICROPHYSICS, Toward a

Theory of Scale Relativity, World Scientific.
Rumelhart D.E., McClelland J.L.. (1989) Explorations in Parallel Distributed

Processing, MIT Press.
Varela F.J. (1979). Principles of Biological Autonomy Elseiver/North-Holland,

New-York.
Weisbuch G. (1989). Dynamique des systèmes complexes, Une introduction aux

réseaux d'automates. InterEditions/Editions du CNRS, Paris.

