
1

Introducing MESSIA:
A Methodology of Developing Software Architectures

Supporting Implementation Independence‡

Ratko Orlandic
Department of Computer Science and Applied Math

Illinois Institute of Technology
10 West 31st Street, Chicago, IL 60616, U.S.A.

e-mail: ratko@charlie.cns.iit.edu

Abstract:
To sustain its rapid growth, software industry must embrace a distributed development paradigm in
which complex systems are deployed by composing independently developed components. The glue
to the development and integration of individual artifacts would be an elaborate software architecture.
MESSIA is being developed as a methodology of software architectures that eliminate the possibility
of architectural mismatch. This paper summarizes two important aspects of the methodology---its
outcome and its design processes. The outcome of MESSIA is depicted by an abstract model of
software architecture. The design processes are derived in a goal-directed fashion, from the
knowledge of the organizational elements of the architectural model.

1. Introduction

Just as other areas of manufacturing, software industry must employ a highly distributed
development paradigm in which complex systems would be deployed through compositions of individually
developed artifacts. The glue to the development and integration of artifacts would be an elaborate
component software architecture that would enable successful implementation and integration of individual
artifacts. Typically, software architecture is viewed as set of realms [1], each of which provides
implementation framework for a class of similar components.

A stumbling block for any compositional software construction is the problem of architectural
mismatch [2]. The mismatch problems are caused by conflicting assumptions of independent vendors,
primarily about the intended environment in which their components were to operate [2]. The actual source
of these problems is the inadequacy of the architectural specification. The development of component
systems hinges on our ability to deal with the problem of architectural mismatch effectively. Moreover,
since it is not irrelevant whether the architecture incurs tens or tens of thousands instances of architectural
mismatch, any success in reducing the number of such instances counts.

An effective approach to the problem of architectural mismatch requires a formal design
methodology that can successfully guide the designers in developing mismatch-free software architectures.
In our terminology, such an architecture is said to support implementation independence (implementation
autonomy) [3]. We are in the process of developing such a methodology, which we named called MESSIA
(Method of Evolving Specifications Supporting Implementation Autonomy). The method relies on a theory
of implementation independence [3,4] that provides an abstract characterization of architectural mismatch
and derives the required conditions to achieve implementation independence. MESSIA is envisioned as a
domain-specific method, targeting the domain of database management. However, in this paper, we ignore
the related domain-specific issues.

In this paper, we summarize two important aspects of the methodology---its outcome and its design
processes. The outcome of MESSIA is depicted by an abstract model of software architecture specifically

‡ Work partially supported by DOE Grant DEFG02-95ER25254.

2

developed with the objective of implementation independence in mind. Section 2 introduces the model and
discusses its basic organizational elements. Analyzing the structure of the architectural style, in Section 3,
we derive the processes required to produce an architecture that supports implementation independence.

2. Structural Principles of Software Architecture

To tackle the problem of architectural mismatch, the designers must have an adequate model of
software architecture that would allow them to express arbitrary implementation concerns. The model must
also provide a minimal set of concepts allowing the designers to reason about the incompatibility of viable
components. In addition, the model must provide an adequate set of architectural restrictions using which the
designers can prevent the possibility of architectural mismatch.

In [4], we proposed a new model of software architecture. The organizing principle behind the
model is that to reason about system implementation, it is necessary to understand the partition of the system
into realms, the relevant implementation dilemmas of each realm, and the alternative solutions which may be
used to resolve the dilemmas. By implementation dilemma, we mean any question concerning the
implementation of a component that can have more than one answer. A resolution is one of the possible
answers that, if changed, produces a system different from the original in some significant way. Since
different high-level resolutions may lead to different kinds of lower-level dilemmas, which dilemmas will
appear in the domain of a certain realm is partly determined by the adopted resolutions.

In the model, each realm is defined as a strict hierarchy of dilemmas and resolutions, called a
dilemma-resolution tree (DR-tree) [4]. A DR-tree (e.g., the one illustrated in Figure 1) depicts the design
decisions pertained to the definition of a realm. Each interior node of the hierarchy represents either an
implementation dilemma or an allowed resolution, but a leaf is always a resolution option. The root of the
tree is a dilemma that may be artificially introduced just to keep the hierarchy strict. A node representing a
dilemma may have one or more children that denote alternative resolutions of the dilemma. In turn, an
allowed resolution may lead to zero or more lower-level implementation dilemmas.

Figure 1. An abstract DR-tree of a certain realm.

The model defines a single concept using which the designers can reason about the incompatibility--
shared implementation dilemmas. While the presence of shared dilemmas does not necessarily lead to
architectural mismatch [4], their existence testifies to the possibility of such a mismatch. In Figure 1, the
shared dilemmas of the realm are shaded. A dilemma appearing in more than one realm is regarded as
shared. However, even a dilemma dX that appears in the definition of only the realm X can be shared,
provided that there is a resolution of a dilemma dY of another realm Y which “assumes” a particular way or

D1

D1:r1 D1:r2

D2 D3

D4

D5

D6

D2:r1

D2:r2

D3:r1

D5:r2

D6:r1D4:r1 D6:r2

D5:r1

3

ways in which dX must be resolved [4]. For uniformity, we require [4] that dX be introduced in the realm Y,
i.e. linked to an appropriate place in the DR-tree of Y. In [4], we have outlined a procedure for detecting the
shared dilemmas on the DR-trees.

The theory of implementation independence [4] reveals that, to prevent architectural mismatch, each
DR-tree must be deep enough to include all shared dilemmas of the corresponding realm. It also shows that
the architectural mismatch can be prevented using only four types of architectural restrictions: list a dilemma
as part of the definition of a realm, list a resolution option, require a dilemma, and require a resolution [4].
However, many types of shared dilemmas appear deep in the decision-making process, at levels that have
been traditionally left up to the implementors. In practice, it makes sense to treat the permitted resolutions of
these special classes of shared dilemmas separately, as global architectural assumptions. Consequently, the
implementors would be free to decide in which implementation context to apply them, while the designers
would have to worry about the contextual relationships of only a subset of dilemmas.

Figure 2. Structure of the architectural style.

The above reasoning leads to a conclusion that software architecture should be structured in at least
two levels: global architectural assumptions and realms. This is illustrated in Figure 2. Each realm should be
organized as a strict hierarchy of dilemmas and their resolutions (DR-tree) and the required dilemmas and
should be distinguished from the optional ones. The global architectural constraints should be structured as a
forest of DR-trees. The precise implementation context of “global” dilemmas is left up to the implementors.

3. Design Processes of MESSIA

The theory of implementation independence clearly shows that eliminating architectural mismatch
using purely architectural is not an impossible task. However, in domains characterized by high degrees of
coupling, this objective is extremely difficult to achieve. Part of the problem lies in the fact that shared
dilemmas are highly elusive. Compounding the problem, in complex domains, there are many kinds of
shared dilemmas that appear deep in the DR-trees and/or propagate throughout the system. In the process of
detecting these types of shared dilemmas and determining their proper implementation context (in order to
link them to the DR-trees), the task of the designers would look more like that of implementors.

Our work on MESSIA is motivated by a desire to find effective ways of dealing with the above and
similar problems. In developing the method must, we must balance the need to simplify the design and
reduce the size of the architectural specification, on one hand, with the necessity to eliminate any ambiguity
in the specification, on the other.

The way an architectural specification is structured partly determines the approach to its
construction. Therefore, MESSIA regards component software design as a process of refining the targeted

 Global
Constraints

 Realms

 Realm 1 Realm 2

4

software architecture, beginning with a set of requirements. Referring back to Figure 2, one gets an idea of
that steps are required to produce such an architecture---one needs to define the domain, decompose it into
realms, identify the dilemmas that will be subject to global constraint, define the realms and global
constraints, perform a dependency analysis and necessary consistency checks, and produce the final
architectural specification. This implies the following broad processes of component design:

1) Requirements specification. To create any high quality software, the critical first step is to formulate
the targeted domain in clear and consistent terms in the form of system requirements. The complexity of
this process stems from the fact that system requirements are usually derived from some informal and
often conflicting user requirements.

2) Domain decoupling. This is perhaps the most important and the most complex process of component
design in which the designers must identify and factor out classes of similar components. In the process,
the designers would perform a selection of base technology relying on a partial, rather than an
exhaustive, analysis of implementation dilemmas [4].

3) Detailed DR-tree construction. A thorough treatment of all implementation dilemmas comes during
the process of constructing detailed DR-trees of all realms previously identified. The process also
determines the implementation context of the dilemmas and makes sure that the resolution sets of
relevant dilemmas are restricted by listing the allowed resolution options.

4) Exhaustive dependency analysis. At this point, the designers would have enough detail about the
realms and their domains to perform a thorough dependency analysis in order to identify the dilemmas
shared across the realms.

5) Cutoff analysis. Following the dependency analysis, the designers would have a better insight into the
types of shared dilemmas that should be subjects to global architectural constraint. Cutoff analysis is the
process of extracting these global dilemmas and selecting their resolutions.

6) Consistency checking and evaluation. Next, the designers must verify whether a proper balance of all
design objectives is achieved and whether the realms are locally and globally sound. In particular, the
consistency rules derived by the theory of implementation independence [4] must be enforced.

7) Final specification. Finally, an architectural specification must be produced in accord to the selected
architectural style and the architectural restrictions must be stated in accord to the consistency criteria.

There are numerous issues associated with the definition and the formalization of MESSIA. At present,
our focus is on the key process of domain decoupling. The outcome of this process determines the degree of
sharing between the individual realms and, consequently, the complexity of subsequent design, the size of
the architectural specification, and the implementation complexity. In [5], we proposed a methodology of
decoupling, targeting the domain of database management. The method proceeds in three phases:
application-driven, service-driven, and implementation-driven decomposition. Each phase is designed to
provide a framework for addressing one class of design objectives [5]. In the immediate future, we plan to
continue our work on the formalization of software architecture and complete the definition of the
methodology of DBMS decoupling.

References

1. D. Batory and S. O'Mally, “The Design and Implementation of Hierarchical Software Systems with
Reusable Components,” ACM Trans. Software Engineering and Methodology, 1(4):355--398, 1992.

2. D. Garlan, R. Allen and J. Ockerbloom, “Architectural Mismatch or Why It's Hard to Build Systems out
of Existing Parts,” Proc. 17th Int. Conf. on Software Engineering, Seattle, WA, 179--185, 1995.

3. R. Orlandic, “A Theory of Implementation Independence: Architectural Specificity vs. Architectural
Mismatch,” Proc. 10th Int. Conf. on Software Eng. and Knowledge Eng. SEKE’98, San Francisco, CA,
140--145, 1998.

4. R. Orlandic, “A Formal Model of Reference Architecture and a Theory of Implementation
Independence,” technical document, 1998.

5

5. R. Orlandic, “Foundations of a Methodology of DBMS Decoupling for Evolutionary Component DBMS
Design,” Proc. Int. Database Engineering and Applications Symposium IDEAS '98, Cardiff, Wales, UK,
178--187, 1998.

