
An Architectural Approach to
Performance Issues
– from Experiences in the
Development of Network Management
Systems -
Natsuko Noda, Tomoji Kishi
Software Design Laboratories, NEC Corporation
(Igarashi Building) 11-5, Shibaura 2-chome,
Minato-ku, Tokyo 108-8557, JAPAN
TEL +81 3 5476 1089, FAX +81 3 5476 1113,
e-mail n-noda@ccs.mt.nec.co.jp

Abstract
For the last few years, we have been consulting a project which develops Network
Management systems (NMSs). In NMS development, requirements about
performance are rigid and various performance problems arise. To avoid these
problems, we try to establish a performance design method in which we estimate
the system performance based on the actual measurement. In this method, it is
important which modules should be chosen as measurement targets to estimate the
whole system performance accurately. In order to identify target modules for the
measurement properly, it should be considered what relationships the modules
have with other modules in view of performance. That is, we should identify
measurement targets considering the software architecture from a performance
perspective.
 In this paper, first we define the software architecture for the performance
design, and then we describe a method for identifying the appropriate target
modules to estimate performance. For this method, we also introduce the
linkage/dependency graph to capture the architecture.

Keywords
Software architecture, performance issues, design method,

network management system

1 INTRODUCTION

For the last few years, we have been consulting a project which develops network
management systems (NMSs). This team has been developing many NMSs for the
last ten years. A NMS is the system which monitors and controls equipment
connected to networks. Developing NMSs involves addressing rigid requirements
about performance. For example, a NMS must have enough performance in
processing alarms from the network equipment. Since it controls a large number of
equipments and they would raise alarms at the same time, it has to deal with these
alarms at a time. If an alarm is not properly handled, the equipment keep raising
alarms and that could cause another equipment to raise alarms. Therefore, a
number of alarms to be processed by a NMS at a time is clearly defined.
 It is difficult to design software to meat its performance goals (to design
performance), and numerous problems invariably arise. Frequently, it is found at
the end of the development that the system does not show the desired performance
such as the response time and the throughput.
 In order to avoid these performance problems, we try to establish an effective
method for designing performance. We intend to make good use of performance
measurement for this method, because it is difficult to understand performance
concretely in figures without measuring. However, it is impractical to find
problems ultimately when the system is completed and measured about its
performance. In our method, we measure performance partially in design process,
i.e., we implement some modules, which seems to be significant for the system
performance, run them, and then measure their performances, in order to estimate
the whole system performance. We call this approach for designing performance,
measurement approach.
 In the measurement approach, it is quite important to determine appropriately
which modules to be the measurement target. To identify the proper measurement
target, it is required to understand software structure in view of performance. In
this paper, we propose the technique to identify the measurement target modules,
in which we use linkage/dependency graph that represents software architecture
from a performance perspective.

2 MOTIVATIONS

Many development teams actually have tried the measurement approach. However,
it does not always give us an accurate prediction. The followings are such typical
examples:
• When we had implemented a part of a system and measured its performance, it

had showed the sufficient performance. However, it showed much lower
performance, when it was put into the entire system. In fact, this function used
a channel, which was used by many other functions, and all these functions
scrambled that channel.

• A process of a communication from A to B consists of two communication
processes: a communication from A to C and from C to B. To know the time

for the process of the communication from A to C, the time for those two
consisting communication processes had been measured. However, the real
communication time from A to B was much longer than the sum of these
measured time. In fact, since these two communication processes used
different protocols, a transformation of protocols was required in C and it took
long time.

As the above examples show, in order to get accurate performance prediction, it is
significant to choose modules properly which are implemented and measured about
its performance. In this paper, we call this set of modules (to be implemented and
measured about its performance) "target module set" for the measurement
approach.
 It is not obvious which modules make a proper target module set. To identify it,
it is important to consider the structure of software, i.e., software
architecture[Gar95_1]. Especially, we believe the followings to be significant:
• Whether relation between the performance of the entire system and that of the

set can be understood.
• Whether the performance of the set does not change, when it is put into the

entire system.

3 GOALS OF OUR STUDY

In order to make the measurement approach for designing performance work well,
we try to establish an effective method in which we can identify target module sets
and use them to estimate the whole system performance. For this purpose, first we
define the software architecture from the performance points of views. Then we
describe the method for identifying the appropriate target module sets by utilizing
this architecture.

4 THE ARCHITECTURE FOR THE PERFORMANCE DESIGN

In this section, we define the architecture for the performance design. It should be
noticed that this architecture does not directly represent performance. Our aim is
not to model performance itself, but clarify the structure to identify modules to be
measured for the performance design, because we think it is difficult to understand
performance without measuring.
 Since we are interested in the performance with respect to certain service, we
explicitly express the relationship between performance and service in our
definition. In this paper, service is the behavior provided by the given part of a
system[Boo94].
 The architecture is defined by means of a type of component (serviceable
module set) and two types of connector (dependency, linkage):
• Serviceable module set:

A serviceable module set for service S is a set of modules that are required to
realize S. Note that resources, such as channels and queues, are also included

in a serviceable modules set, since they are also necessary to implement the
service. In this paper, M(S) denotes a serviceable module set for service S.

• Dependency:
A dependency between two serviceable module sets M(S1) and M(S2) is a
relationship between M(S1) and M(S2) in which the behavior of the modules
in M(S1) influences the behavior of the modules in M(S2).

• Strength of dependency:
Indicates the degree to which the behavior of the modules in M(S1) has the
influence upon the behavior of the modules in M(S2).

• Linkage:
A linkage between two serviceable module sets M(S1) and M(S2) is a
relationship between M(S1) and M(S2) in which M(S1) and M(S2) collaborate
with each other to realize another service S.

• Strength of linkage:
Indicates the degree to which the linkage has the influence upon the
performance of S.

According to the above definition, a dependency is a directional relationship.
However, in most cases, if M(S1) influences M(S2), M(S2) also influences M(S1).
Thus, in this paper we ignore the direction of dependencies.
 If there is a dependency between two serviceable module sets M(S1) and M(S2),
the behavior of M(S1) is influenced by the behavior of M(S2) and then M(S1) does
not show the same performance, when it is put into the entire system. On the other
hand, if there is a linkage between M(S1) and M(S2), there exist collaboration
between M(S1) and M(S2) to realize another service S and this collaboration
makes it difficult to estimate the performance of M(S). For example, if there are
mismatches of data model or control model[Gar95_2] between M(S1) and M(S2),
that may require transformation process we cannot ignore when we consider the
performance, and the performance of M(S) may not be easily estimated based on
the those measured performances. Thus, in the measurement approach, it is
significant to understand these relationships.
 It should be noticed that this architecture is intended to express the software
structure in a view of performance with respect to certain service. It may be
different corresponding to each service and strength of linkage/dependency is not
constant.

5 USING LINKAGE/DEPENDENCY GRAPH FOR PERFORMANCE
MEASUREMENTS

In this chapter, we introduce the linkage/dependency graph to represent the
architecture, then, we describe how we identify appropriate target module sets
using the graph and estimate performance with the identified target module sets.

5.1 Graph Definition
A linkage/dependency graph for service S (i.e., a linkage/dependency graph with
respect to the performance of S) is the graph of which constructs are defined as
follows:
• Node:

Denotes a serviceable module set corresponding to a service which is realized
by the system. N(S) represents a node that denotes a serviceable module set
M(S).

• Linkage arc:
Denotes a linkage between two serviceable module sets, each serviceable
module set is denoted by the node at the end of the arc and is for a service
included in S, namely each service is a sub-service of S. Since this graph is
constructed for the particular service S, a linkage related to realizing other
services than S is not denoted as an arc.

• Dependency arc:
Denotes a dependency between two serviceable module sets, each serviceable
module set is denoted by the node at the end of the arc.

• Weight of linkage/dependency arc:
Represents the strength of linkage/dependency which the arc denotes. Weight
is not less than 0 and not more than 1.

An example of a linkage/dependency graph is shown in Figure 1(b).

5.2 Graph Construction
In this section, we discuss on how to construct the graph.
 In order to construct a graph which expresses completely accurate architecture,
we have to know completely about the precise nature of performance, such as
hardware behavior and performance. In most cases, it is quite difficult to have such
precise knowledge. However, for the performance design, it is not always required
to build a complete graph. Our intention is to build a graph that can be believed to
be the approximation of the architecture and can be utilized to find target module
sets for the performance measurement.
 In this section, we show a very simple construction method based on our
experiences. This method can be used without detailed knowledge about
performance.
 We describe our construction method with an example, simple NMS. The simple
NMS is described in Figure 1(a).

MonitorAEquipmentA

MonitorCEquipmentC

MonitorBEquipmentB Viewer
Central
Monitor

S1

S2

S3
S6

S5

S4

S7

outline
•monitors three types of equipment
•three types of monitor servers, each type one
monitors each type of equipment
•a centralized monitor server monitors three
monitor servers
•a viewer displays the states of each monitored
equipment

•S1, S2, S3: EquipmentA(B,C) notifies
alarms to MonitorA(B,C)
•S4, S5, S6: CentralMonitorServer
observes MonitorA(B,C)
•S7: Viewer shows the information
CetralMonitorServer has

•(Assumption1) The same channel is used in the
following two services: the service notifying alarms
from EquipmentA to MonitorA and the service
notifying alarms from EquipmentB to MonitorB.
•(Assumption2) In order to use the middleware, the
service notifying alarms from each equipment to each
monitor uses the protocol and data structure specific to
the middleware.
•(Assumption3) The protocol and data structure used by
the CentralMonitorServer is different from those
specified by the middleware.

(a) Simple NMS

N(S1)

N(S2)

N(S3)

N(S4)

N(S5)

N(S6)

N(S7)

1

Dependency arc

Linkage arc

0

0

0
0

0

0

0

0

0

01

(b) Linkage/Dependency Graph for S of Simple NMS

N(S1)

N(S2)

N(S3)

N(S4)

N(S5)

N(S6)

N(S7)

1

0

0

0 0

0

0

0

0

0

01

(c) Identifying the Target Module Sets

Figure1 Simple NMS

Let S be the service whose performance we are to estimate and for which we are to
construct a linkage/dependency graph. About this NMS, let S be the service that
Viewer shows that an error has occurred in EquipmentA.

1. Define serviceable module sets and make nodes corresponding to them.

2. For every pair of nodes, define a dependency arc, if two serviceable module sets
corresponding to the two nodes share the same modules.

In this step, we have to be careful not to overlook the sharing of resources, such
as channels or queues, because sharing of the resources could make the
dependency between entirely different services, and sometimes causes serious
problems. Because S1 and S2 use a same channel, a dependency arc is drawn
also between N(S1) and N(S2).

3. Give weight [1,0] to every dependency arc; that is, identify the synchronization
at the shared modules and give weight 1 to the dependency arc where the
synchronization is identified. To the rest of the dependency arcs, give weight 0.

Here, synchronization means the concurrency semantics of an operation,
required to share modules. About the NMS, the synchronization is required
when S1 and S2 use the same channel, i.e., one (S1 or S2) have to wait until the
other completed to use the channel. This would decreases each performance.
Hence the weight of the dependency arc between N(S1) and N(S2) is decided as
1.

4. For every pair of nodes corresponding to the sub-services of S, define a linkage
arc, namely, if there exists a linkage between two serviceable module set
corresponding to the two nodes, define a linkage arc.

Among all the serviceable modules sets for the sub-service of S, namely M(S1),
M(S4) and M(S7), there is a collaboration between M(S1) and M(S4), and
between M(S4) and M(S7). Therefore, we draw a linkage arc between N(S1) and
N(S4), and between N(S4) and N(S7) as well

5. Give weight [1,0] to every linkage arc; that is, if data model and/or control
model used in each serviceable module set, which participates in the linkage, is
different, give weight 1 to the linkage arc. To the rest of the dependency arcs,
give weight 0.

If there are differences in data/control models[Gar95_2], the transformation one
model to another (i.e., the transformation of the data type, or the transformation
of the protocol) is required. Since this kind of transformation tends to be
complicated or to take a long time to process, the collaboration between those
two serviceable module sets can influence the performance of service S. About

the NMS, M(S1) and M(S4) use different data and control model each other.
Therefore, we give the weight 1 to the arc between N(S1) and N(S4).

5.3 Using Graph for Measurement
Based on the constructed graph, we identify appropriate target module sets, and
estimate entire system performance based on measurements of those identified
target module sets.
 How to identify target module sets for the performance measurement of service
S is as follows. Decide the threshold value of weight, and remove arcs whose
weight is less than the threshold (and leave arcs whose weight is not less than the
threshold). Then we can find one or more groups of nodes, in which every node is
connected each other by arcs. These groups are isolated each other (see Figure
1(c)). Among them, pick only groups which contain one or more serviceable
module sets for sub-services of S. Because weight of each arc indicates strength of
linkage or dependency, every serviceable module set in each group is related to
each other by stronger linkage and/or dependency. Furthermore it is not strongly
related to any serviceable module set in another group. Therefore, each group of
serviceable module sets, represented as a group of nodes on the graph, can be
appropriate target module set for S.
 After identifying the target module sets for S, we implement each module set
and measure the performance. When there are linkages in the target module set,
implement serviceable module sets related each other by those linkages and realize
higher service. On the other hand, when there are dependencies in the target
module set, implement modules and measure the performance of the sub-service of
S.

6 CONCLUSION

In this paper, we have defined the software architecture for the performance
design and proposed the performance design method capturing this architecture. In
this method, we identify proper target modules to measure the performance using
the linkage/dependency graph and estimate performance of the entire system based
on the actual measurement.

Since it is unrealistic to expect that we have perfect information to decide the
design direction, especially when we develop such a large system as NMS, this
method is expected to be used effectively.

7 REFERENCES
[Boo94] Booch, G., Object-Oriented Analysis and Design, Benjamin/Cummings,
(1994).
[Gar95_1] Garlan, D. et al., Introduction to the Special Issue on Software
Architecture, IEEE Transaction on Software Engineering, Vol.21, No.4. April
(1995).
[Gar95_2] Garlan, D. et al., Architectural Mismatch: Why Reuse is So Hard,
IEEE Software, Nov. (1995).

