A ProcessView on Architecture-Based
Softwar e Development

Lothar Baum, Martin Becler, Lars Geyer, Georg Molter
System Sdtware Research Group

University of Kaiserslautern

D-67653Kaiserslautern, Germany

Tdl.: +49-631-205-{3427, 3578 3293 3264

Fax: +49-631-205-3558(shared)

{Ibaum, mbecker, geye, molter} @informatik.uni-kl.de

Abstract

Architectural reuse promises the highest benefit when applied in a systematic man-
ner, combined with the reuse of entire suites of artefacts ranging from requirements
templates to pieces of code. In this paper, we present the concept of an architecture-
based devel opment processthat is consequently oriented at reuse in all development
stages. The development steps in this process are performed by reusing aready ex-
isting artefacts as skeletons. Thisresultsin abottom-up approach to development fo-
cused at completion o existing artefacts instead of constructing rew ones from
scratch.

Keywords
softwar e ar chitecture, reuse-centered development process

1 INTRODUCTION

The important role of architecture for the realization o software projects has been
widely accepted by the research community. The architecture of a software system
inthissense can be seen as an abstraction d variousrelevant properties of the system
(Bass 1997). It comprises a set of views, among them structural views on dff erent
levels of abstraction, ranging from the system’ soverall structure down to olject-ori-
ented design. Each of the different architectural views emphasizes specific aspects,
abstracting from details irrelevant for a certain purpose. Moreover, the architecture
of a software system comprises a guideline or rationale for the development of the
system (Perry, 1992), e.g., by identifying the criteriato be goplied for the decompo-
sition d the overall functionality into subsystems.

Decisions about a system'’s architecture ae anongthe first usually taken duing
system devel opment and therefore influence many characteristics of the application
either explicitly or implicitly. For example, the architecture determinesto alarge de-
gree especially those norfunctional properties of the application that cannot be at-
tributed to adistinct set of components — e.g., scaability isno property of asingle
comporent, but an architectural property of the system asawhole. In acertain extent,
asystem'’s architedure a so influences the organization o the project in terms of the
development process used or the structure of the development team.

As a mnsequence, the dhoice of architecture may decide @ou success or failure
of asoftware project, both with respect to the project’ s progressandto thefinal prod-
uct meeting important requirements. This vast influence makes the achitecture of a
succes<ul system animportant asset for reuse. Whilereuse at the level of object-ori-
ented classes or at implementation level provides sgnificant leverage in later stages
of software development, architectural reuse aff ects some of the most crucial andfar-
reaching design decisions. By reusing an appropriate achitecture, not only devel op-
ment effort can be saved and architectural mistakes are possibly avoided, but also
complete achitectura information is made available & the very beginning o the
project. Thisallows for early architectural analysis and prototyping —further impor-
tant steps towards reducing the risks of large software development projects.

To achieve the highest benefit, architectura reuse should be carried ou in a
methodical way. The processmodel presented in the following section is therefore
based uponthe systematic deployment of known architectural modelsand the explic-
it anticipation o reuse activitiesin all development steps. The consequences for sin-
gle process $eps will be pointed out in the subsequent section. We conclude with a
look at our approachesto validatingthe ancept andat our goalsfor further improve-
ment.

2 A PROCESS MODEL FOR ARCHITECTURE-BASED
SOFTWARE DEVELOPMENT

When carried out in an ad-hoc and unsystematic way, the instantiation of an archi-
tecture relies only onthe expertise of the developers. In most cases, the achitecture
to useisonly implicitly existent in the minds of the developers. But even in therare
cases of explicitly stated architectures, important transformation steps from require-
ments on a higher level of abstraction dovn to problem-solving structures and solu-
tions are | eft to the developers' creativity. Not only that important design decisions
become nearly impossbleto trace, but the very same achitecture isthen likely to be
implemented in dfferent, incompatible ways in subsequent applications. Reuse be-
tween projects is thus prohibited because even artefacts srving the same purpose
might be incompatible from an architectural point of view. Such architectural com-
patibility, however, isknown to be a prerequisite for successul reuse (Garlan, 1995)
— an observation that even holds for comporent-based reuse gproaches (Baum,
1998.

Explicitly integrating reuse activities into a process model for architecture-based
reuse-driven software development clearly increases the df ectiveness repeatability,
andtraceability of reuse. The basic idea of our process model isto replacetraditional
refinement and development activities by steps to complete already existing skele-
tons. To achievethis, application development is performed onthe basis of aknown
architecture that is accompanied by a reusable framework. This framework imple-
ments the domain-specific abstractionsidentified bythe achitecture. Besidesthis, it
containsimplementations of the required interaction mechanisms, codefor setting up
the described structures, and the necessary system software dements. In order to en-
sure traceability acrossthe development steps, documentationis provided as part of
the reusable architecture which makes explicit the relationships between the ele-
ments of the various views and models. Thiskind o dependencies can, e.g., take the
form of traceability matricesindicatingwhich artefacts are dfected in which way by
changes to specific d ements of the achitecture.

Our processmodel strongly emphasizes the bottom-up character of reuse: On each
stage of the development process, specific types of already existing artefacts are to
be integrated in the product under development. These types lay the foundetions for
the solution structures for the respective problem.

For thisapproach to be effective, two important prerequisites have to be met: First,
all reusable asets haveto be achitecturally compatibleinthe senseindicated above,
ensuring they can be cmbined without encourtering severe mismatches. Bundling
the achitecturein advance with an entire suite of architecturally compatiblereusable
artefacts not only ensures this consistency but also considerably narrows the search
space for reusable asts. Second, the design activities at the respective level of ab-
straction have to be guided towards the existing reusable assets. In order to incorpo-
rate them, the solution to a design problem has to be expressed in terms of these
asts. In ou approach, thisis accomplished by exploiting information contained in

the system’s architecture, e.g. the eplicitly indicated relationships between ee-
ments of architectural models at diff erent levels of abstraction. The reused architec-
ture thus wrves both as the basis for the reusable assts and as a basis for the
constructed product.

3 IMPLICATIONS ON SINGLE PROCESS STEFS

In this sction, we take a ¢oser look at the implications of the achitecture-centric
and reuse-driven approach on two specific steps in the development process.

Domain Engineaing andRequirements Analysis

Thefirst stage of our processmodel comprises aproject-specific domain engineering
subprocess Based uponareused dictionary and models of the application domain,
project-specific abstractions and concepts are defined and are set in relation to each
other and to the more general domain abstractions. This serves as the foundation for
a oonsistent terminology throughaut the entire development process

For the requirements analysis dage, our approach provides domain-specific
frames and templates for requirements specification using the NRL SCR method
(Heninger, 1980), as well as catalogs listing criteria to be @mnsidered. These tech-
niques facilitate the highly creative process of deriving the gplication’s require-
ments from the problem description: Most important, proven schemata and
structuring approaches for the requirements description are dready known and need
not be engineered anew. Besides this, it is possible to achieve ahigher degree of
completeness of the requirements statement, and the requirements descriptions of
subsequently reaized applications can be structured similarly by applying these
guidelines. Moreover, because the frames and templates were designed to fit into the
nations and model s defined in the domain engineering subprocess, it can be ensured
that the requirements description for the specific goplicationisalso done using these
terms.

Ancther technique for exploiting danain-specific knowledge in order to suppat
the requirements description is based on the mncept of design spaces as originally
presented in (Lane, 1990) and extended in (Baum, 1998). Similar to afaceted classi-
fication scheme (Prieto-Diaz, 1987), the design space for a specific goplication do-
main provides a uniform and semi-formal way for describing and classfying bah
requirementsto and —functional and ronfunctional— properties of systemsin that do-
main. The design space tharacterization d the goplication under development is an-
other means to achieve a higher consistency and quality of the requirements
description: By evaluating the mnsistency constraints gated in the design space,
contradictory statements about the gopli cation can be disclosed.

Refinement and implementation

Asalready stated above, asystem’ sarchitecture comprises aset of models represent-
ing various relevant aspectson dfferent levelsof abstractions. In aur approach, these
models — especidly those describing structural aspects — are used as a skeleton for
baoth the products and the devel opment activitiesin all stages of the devel opment pro-
Cess.

Specifically, in each development activity, certain types of reusable atefacts have
to beintegrated in the product under development. A broad variety of techniques for
achieving genericity can be deployed for their realization, as described in (Nehmer,
1997, e.g. The solution structures for the respective design problem are built by in-
stantiating these types, which in this respect can be compared to terminal symbolsin
agrammar. The structures that can be aeated using these artefacts are defined by ap-
propriate rules and constraints. Additionally, the semantics of these solution struc-
tures and the interconnection protocols are made explicit. In this context, design
spaces can be deployed favorably, onthe one side describing constraints that have to
be met, on the other side providing hints in the form of design rules. In addition to
the reusabl e artefacts themsel ves and the rules and constraints defining the solution
structures, a set of guidelinesis given that provide hints on how to solve the respec-
tive design problem, i.e. how to map the domain models to these structures.

As an example, consider the high level structural decomposition o the system. It
identifies from the goplication domain’s point of view the most important abstrac-
tions and structures in the system. The reused architecture describes an incomplete,
generic high-level structure for systems from this application damain that hasto be
refined and completed during development of aspecific system: it identifiesthe prin-
cipal elements, it describes the interconnedion and interaction structures that can be
built up, and it describes how to map the goplication’s gecific concepts and constit-
uents to these solution structures.

4 VALIDATION AND FURTHER WORK

Of course, our approach is also affected by some general caveats of reuse. First, a
certain amount of systems hasto be expected to be built based on the same set of re-
usable atefacts to make the development of these reusable artefacts economically
sensible. Thisis particularly true since developing an artefact to be reusable neces-
sarily implies a certain overhead (Brooks, 1995). Thus, especially product line envi-
ronments (Bass, 1996),(Dikel, 1997) can benefit from our architecture-based reuse-
driven approach. Second, thereis sme dfort required to grasp the underlying ideas
and contextua implications of reusable atefacts, which is indispensable to avoid
mistakes resulting from wrong deployment. At this point, we intend to provide tools
extending onthe concept of I nteractive Libraries (Molter, 1996) in order to explicitly
illustrate the consequences and trade-offs involved. Third, the right bal ance between
sufficient flexibility of the framework with its reusable assets and sufficiently

tail ored suppat these asets provide has to be found — compromises at both ends
will have to be accepted.

In order to practically evauate these trade-offs and to asessthe potential of the
described process for efficiently developing applications, we are currently conduct-
ing a feasibility study. To this end, we have developed a reusable architecture and
the accompanying framework for appli cations from the building automation domain.
The achitecture is primarily oriented at room climate control systems, i.e., applica
tions controlling room temperature, humidity, and air circulation. In a second set of
experiments, we will try to dbtain quantitative results about the dfects caused by the
development processin order to gain greater insight abou the benefits and draw-
backs inherent to our approach.

Besidesthisexperimental validation, it is our goal to investigate further techniques
for capturing the flexibility and the generic potential of reusable artefads, e.g. of ar-
chitectures and their descriptions, as well as of frameworks or components. Thisis
especially important in the context of product line settings. Furthermore, we intend
to broaden thefocus of our research activitiesto encompass organi zational topicsand
software life gycle stages beyond the initial delivery of the product.

5 REFERENCES

Bass L., Clements, P., Kazman, R.: Software Architecture in Practice, Addison-Wes-
ley, 1997

Bass L., Cohen, L., Northrop, L.: Product Line Architectures, Int'l Workshop on De-
velopment and Evolution of Sdtwar e Architecturesfor Product Families, Avila,
Spain, 1996

Baum, L., Becker, M., Geyer, L., Molter, G., Sturm, P.: Driving the Compasition of
Runtime Platforms by Architectural Knowledge, Eighth ACM SIGOPS Europe-
an Workshop Suppat for Composing Distributed Applications, Sintra, Portu-
gal, September 1998

Baum, L., Geyer, L., Molter, G., Rothkugel, S., Sturm, P.: Architecture-Centric Soft-
ware Development Based on Extended Design Spaces, Second Int'l Workshop
on Development and Evolution d Sdtware Architectures for Product Families,
Las Pamas de Gran Canaria, Spain, February 1998

Brooks, F.P.: The Mythical Man-Month, anniversary edition, Addison-Wesley, 1995

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern-Oriented
Software Architecture: A System of Patterns, Wiley, 1996

Dikedl, D., Kane, D., Ornburn, S., Loftus, W., Wilson, J.: Applying Software Prod-
uct-Line Architecture, IEEE Computer, Vol. 30, No. 8, August 1997

Gamma, E., Halm. R., Johnson, R., Vlisddes, J.: Design Patterns. Elements of Re-
usable Object-Oriented Software, Addison-Wesley, 1995

Garlan, D., Allen, R., Ockerbloom, J.: Architectural Mismatch: Why Reuse is So
Hard, |EEE Sdtware, 12(6), pp. 17-26, 1995

Heninger, K. L.: Specifying software requirements for complex systems. New tech-
niques and their application, IEEE Transactions on Sdtware-Engineering, SE-
6(1), pp. 2-13, 1980

Lane, T.G.: Studying Software Architecture Through Design Spaces and Rules,
Technical Report CMU/SEI-90-TR-18, Carnegie Mellon Univ., 1990

Molter, G., Baentsch, M., Baum, L., Rothkugel, S., Sturm, P.: Interactive Libraries-
Automatic Guidance for Using Software Comporents, S-B 501 Report 12/96,
Kaiserdlautern, Germany, 1996

Nehmer, J., Sturm, P., Baentsch, M., Baum, L., Molter, G., Rothkugel, S.: Customi-
zation of system software for large-scale embedded applications, Computer
Communications 20(1997), Elsevier, June 1997

Perry, D., Wolf, A.: Foundations for the Study of Software Architecture, ACM S G-
SOFT Sdtware Engineering Notes Vol. 17 Nr. 4, October 1992

Prieto-Diaz, R.: Classfying Software for Reusability, |EEE Software, January 1987

6 BIOGRAPHIES

Lothar Baum studied computer science at the University of Kaiserslautern and re-
ceived hisM.Sc. in 195. Since then he is working as a member of the system soft-
ware groupat the University of Kaiserslautern. Hisinterests and research areas focus
on methods and techniques for building tailor-made operating systems on the basis
of generic comporents.

Martin Becker received his M.Sc. in computer science in november 1997 from the
University of Kaiserdautern. He is currently working as a member of the system
software group. Hisinterests and research areas include the configuration of generic
systems, generic operating systems design and cryptography.

Lars Geyer received his M.Sc. in computer science & the University of Kaiserslaut-
ernin 1997. Since then he is working as a member of the system software research
groupat the University of Kaiserdautern. His research interests are focused onpro-
cesses for the development of customized runtime platforms with generic compo-
nents.

Georg Molter received his M.Sc. degree in computer science in december 1994 He
is currently working as amember of the system software research groupat the Uni-
versity of Kaiserslautern. Hisresearch interests are focused at support techniques for
integrating operating systems knowledge into the software development process and
at architecture-based approaches to software development in general.

	A Process View on Architecture-Based Software Deve...
	Lothar Baum, Martin Becker, Lars Geyer, Georg Molt...
	Fax: +49-631-205-3558 (shared) {lbaum, mbecker, ge...

	Abstract
	Keywords software architecture, reuse-centered dev...
	1 INTRODUCTION
	2 A PROCESS MODEL FOR ARCHITECTURE-BASED SOFTWARE ...
	3 IMPLICATIONS ON SINGLE PROCESS STEPS
	4 VALIDATION AND FURTHER WORK
	5 REFERENCES
	6 BIOGRAPHIES

