Specification and Analysis of
Component Based Software
Architectures

P. Ciancarini, and C. Mascolo

Dip. di Scienze dell’Informazione, University of Bologna
Mura Anteo Zamboni, 7, I-40127 Bologna, Italy

e-mail: {ciancarini,mascolo}@cs.unibo.it

Abstract

We present a coordination language for the specification of software archi-
tectures. A model checker built on this language has been used to perform
analysis on configuration of components. We reason on the assumptions that
components make on their contexts and analyze how different assumptions
can match and how components can be interconnected. We can predict which
context allows a component to behave exploiting all its functions.. The coor-
dination model we adopt fits this kind of reasoning.

1 INTRODUCTION

The growing complexity of modern software systems increases the need of
rigorous formalization of structural and behavioral issues on the basis of their
design.

In this paper we show that a coordination language can be naturally used
as an architectural description language. The coordination model allows the
study of the behavior of single components, of their assumptions about the
environment, and of the possible components interconnections. In particular
we perform some analysis on single components and on configurations using
a model checker we have built for our language. The structure of the model
checker allows the verification of properties on isolated parts of the architec-
ture and the consequent verification of hypothetical configurations composed
of multiple components.

Modern software architectures often contain mobile components and recon-
figuration is a frequent event. The analysis of components as isolated items
could help in the reconfiguration phase: the assumptions of every component
about the extern environment are taken into account and matched in order
to obtain acceptable configurations.

©IFIP 1998. Published by Chapman & Hall

2 Specification and Analysis of Component Based Software Architectures

2 OVERVIEW OF POLIS

PoliS is a coordination language based on nested tuple spaces. We now briefly
introduce the language but more details can be found in [3]. A PoliS speci-
fication is hierarchically structured: it denotes a tree of nested spaces whose
structure evolves dynamically in time.

A space can contain both other spaces and tuples of two types: ordinary
tuples, which are ordered sequences of values, and program tuples, which con-
tain the coordination rules that manage local activities inside the space they
belong to. The execution of a program tuple is an action, which can modify a
space tree removing tuples and adding tuples and spaces. However, an action
can only handle the tuples in the space it belongs to or in its parent space.
This constraint defines both the “input” and the “output” environment of
any action. Every program tuple (“r” : R) refers to a rule R specified below
the description of the space containing the program tuple. The rule is the
construct that defines which reactions can take place. A rule can act on the
tuples of the space in which it resides and in the tuples of the parent space of
this space: we will call this spaces the rule scope. A rule defines a reaction that
reads and consumes tuples in its scope, performs a sequential computation,
produces new tuples in its scope and creates new subspaces. Rules are first
class entities in PoliS: in fact, they are themselves part of spaces as (program)
tuples that can be read, consumed or produced just like ordinary tuples. A
program tuple has the form (rule_id: rule) where rule_id is a rule identifier
and rule is a PoliS rule. A program tuple has an identifier which simplifies
reading or consuming program tuples.

Table 1 contains the specification of a client-server system. The StartContext
space is the main space, that contains the program tuple (“create” : CREATE).
The program tuple indicates that the rule CREATE, specified below in Ta-
ble 1, is contained in the main space. A key feature in PoliS is that a space
tree can evolve dynamically: a new space is created by the primitive tsc (for
tuple space create) and any space can be removed because of the execution of
a special rule named invariant that terminates the space where it is executed.
For instance, the rule CREATE of Table 1, contained in the main space, cre-
ates the spaces Client and Server. Client space contains the tuple (“idle”, i)
that indicates the state of the client, the program tuple (“req” : REQ), and
the program tuple (“put” : PUT) that refer respectively to the rule REQ
and PUT specified below. The rule REQ emits a new request (tuple) in
the main space: 1 (“request”,i), and changes the state of the client from
(“idle” i) to (“wait”, i) where i is the number associated to the request. The
rule GET waits for an answer in the main space 1 “answer”, answ,i) where
i corresponds to the number of the request sent (the rule checks if the tuple
(“wait” i) is present). Server contains a tuple indicating the state and three
rules: the rule GET RE(Q checks if the state is idle and a request is present in
the main space, then moves the request in the local space. The rule SERV E

POLIS AND SOFTWARE ARCHITECTURES 3

generates an answer to the request. The rule PUT resets the state of the
server to idle and moves the answer tuple to the main space.

| StartContext
StartContext = ﬂ (“create” : CREATE) ﬂ

CREATE = ﬂ (“create” : CREATE) H —}ﬂ tsc(Client), tsc(Server) H
|

| Client |
Client = ﬂ (“idle”,0), (“req” : REQ),(“get” : GET), (invariant : END) ﬂ

REQ = ﬂ (“idle” 1) E—)ﬂ T(“request”, i), (“wait”, 7) ﬂ
GET = ﬂ (“wait” 1), 1(“answer” , answ, i) GM—}{] (
where f(z) = (z + 1)

END = ﬂ ?(“idle” , 10) ﬂ—)ﬂ 1(“done”) H

“Zdle” , ,7 ﬂ

| Server |

_)| (“getreq” : GETREQ), (“idle”),
Server = ﬂ (“serve” : SERVE), (“put” : PUT)

GETREQ :ﬂ t(“request” i), (“idle”) E—)ﬂ (“request” i) E
SERVE = ﬂ (“request”, ﬂ —}ﬂ “answer” , answ, i) ﬂ

PUT:ﬂ (“answer”, answ, 1) H—)ﬂ T(“answer” ,answ, i), (“idle”) H

Table 1 Specification of the Client-Server System

In order to partially constrain activities inside a tuple space we can define
one or more invariants, namely constraints that must hold for all the tuple
space lifetime. Whenever an invariant is violated, the tuple space terminates
and disappears. For instance the rule EN D in our example is an invariant.

3 POLIS AND SOFTWARE ARCHITECTURES

Research in the field of software architecture has led to the definition of several
environments and languages for the definition and the design of architecture of
software systems. Some works face the problem of defining a general-purpose
language for architectural description, supporting system design by correct

4 Specification and Analysis of Component Based Software Architectures

combination of given interacting subsystems. Other works aim to characterize
systems design according to defined style constraints, developing style specific
environment to guide the building of specific systems [5]. Other architectural
description languages have been developed exploiting well-known formalism
as CSP [1] or -calculus [8] providing also tools for animation and monitoring

[7]-

We now show how we use PoliS for the specification of software architectures
putting emphasis on the interaction among components. The basic entity of
the PoliS language is the Tuple-Space: an architectural component is specified
using a space. When necessary, a component can be seen as composition of
different sub-components. We specify this kind of compositionality in PoliS
exploiting the multiple tuple spaces structure: each composed component is
specified with a PoliS space containing other sub-spaces. For instance, a server
component can be seen as a single space or as composed of different entities
(i.e. sub-spaces) handling different kind of requests or providing different ser-
vices.

The coordination model is a good framework to abstract from communi-
cation details. At the architectural level we would like to have an abstract
view of the system: the tuple-based communication mechanism let the focus
be put on the structure. On the other side, if the specification of the con-
nection is important, it is possible to associate with the connector a space in
order to define its particular behavior. For instance, in the example shown in
Table 1 the client and the server communicate through the tuple space using
this coordination abstraction. We could modify the model adding an entity,
with the function of connector (i.e. a Buffer or a Router) in order to spec-
ify its particular behavior. This connector can also be composed of different
sub-components, for instance a Layered Router: the nested space model fits
the specification of this layered structure. The PoliS spaces model allows the
specification of context-free components as independent spaces with their ac-
tive rules. The PoliS mechanism of active rules scoping helps in the definition
of the components assumptions on the external environment. For instance,
consider a generic rule enabled only when a particular tuple is present in the
parent space (1(tuple)): the component containing that rule should be put in
a configuration that will eventually provide that tuple, otherwise parts of the
component behavior will be unexploited (with consequences that can lead to
the deadlock of the system). In this way we can reason on the assumptions
that components make on their contexts and analyze how different assump-
tions can match and how components can be interconnected. We can predict
which context allows a component to behave exploiting all its functions. These
kinds of reasoning could help in the organization of the architectural config-
uration. Furthermore, the help of automatic tools for the testing of these
properties could be devised. In this direction we propose the use of our PoliS
model checker: we introduce this topic in the next section.

MODEL CHECKING SINGLE COMPONENTS AND ARCHITECTURES 5

4 MODEL CHECKING SINGLE COMPONENTS AND
ARCHITECTURES

In this section we outline a technique to check the behavior of components
as isolated from the context. We can also make interesting proofs on the
properties of composed architectures, where the components analyzed before
are put in relation and interact. The configuration matching can be performed
on multiple components.

This sort of analysis is possible as the model checker works bottom-up on the
spaces, building graphs for the innermost ones and then going on recursively.
Other key issues in this sort of compositionality analysis are the assumptions
that a space (i.e. component) makes on the environment. The PoliS language
provides a particular scoping mechanism: the reactions contained in a space
can make assumptions on the external space (i.e. the parent of the local space)
using the 1 operator and formal tuples (not instanced) (see Section 2 for
details).

A component (i.e a space) that is put in a context (i.e. an other space) uses
pattern matching mechanism to match the assumptions contained in its rules
(i.e. the tuples with “1") with the actual tuples contained in the environment.
In this way we can easily state when a component will be able to have an
useful behavior exploiting its functionalities and when not. If the environ-
ment does not provide the tuples that the component needs, the behavior of
the component will be constrained and its capabilities will not be completely
exploited. In a previous work [4] a mapping between PoliS operational seman-
tics and TLA (Temporal Logic of Action) has been studied. This allowed us
to use a theorem prover for formal reasoning on PoliS specifications. In this
work instead we exploit a model checking technique to perform architectural
analysis on PoliS specification documents.

4.1 Analysis of Software Architectures

We show how the model checker can be used for the verification of proper-
ties on software architectures. We first analyze single components out of their
context, considering their interactions with the environment. Then we will be
able to analyze configurations and saying if they are feasible and convenient.
The study of components as isolated entities is useful when dealing with com-
plex architectures where components are not elementary objects but they are
composed of many parts.

We now show how a single component can be analyzed out of its context.
Counsider the Server in the Client-Server example (1): the Server makes only
one assumption on the external context, that is, it remains idle till a request is
present in its context (i.e. the father space) (1(“request”,i)), then a GETREQ
reaction can take place and after some steps an answer is generated in the

6 Specification and Analysis of Component Based Software Architectures

environment (1(answer,answ,i)). The model checker can be used to prove
this property:

Vi,a,C((“request”, i), Server) € C~»(“answer”,a,i) € C (1)

That is, if the context C of the Server guarantees the arrival of a request,
then the answer to the request will be provided. The Client can emit a request
without checking the context C, however it blocks if the context does not
provide an answer (rule GET). Then, if an answer is provided the Client can
go on making requests till the number of requested services is ten.

Vi, a,C(Client, (“answer” a,i)) € C~ (2)
(((“request”,i+ 1) € C)V(“done”) € C)

We can put together the assumptions of the two components and try to
check if our Client-Server configuration is feasible.

(Client, Server, (“request” i)A(i < 10)) € C~ (3)
(“answer” a,i) € C~ 4)
((“request” i+ 1) € CV(“done”) € C) (5)

We can trivially reach a state satisfying (3) in fact the Client can emit a
request (with ¢ < 10). The first “leads to” (~) property is satisfied by (1) as
just shown, and the second “leads to” property is satisfied by (2). Hence, we
conclude that the two components form a feasible configuration and that the
corresponding assumptions match.

The Client-Server is a simple example without reconfiguration problems
due to mobility of components. The introduced approach of analysis can be
very useful to know if a mobile component could be introduced or not in
a particular sub-architecture. For instance, if we introduce an agent in our
Client site (space) and want to send it to the Server site in order to avoid
heavy communication due to exchanging of requests-replies messages, we could
analyze the Agent space and its assumptions on the environment and see if
they match with the Server space contents.

5 RELATED WORK AND CONCLUSIONS

We have presented PoliS, a coordination language, based on multiple tuple
spaces, for the specification of software architectures. Components are for-
malized as spaces and connectors can be specified either using simple ab-
stract tuple production/consumption mechanism, or building more sophisti-
cated spaces for connector entities and specifying their behavior.

RELATED WORK AND CONCLUSIONS 7

We use a model checking technique for PoliS to perform verification on
the compatibility of components. Every component makes assumptions on its
context. When put together the components assumptions have to match in
order to obtain a meaningful software architectural configuration.

The Cham model [2] has been exploited to perform similar checks in [6]: we
think PoliS offers an immediate abstraction (the rule scope) for these kinds
of checks.

Modern software architectures often deal with mobile components and the
diffusion of Internet based systems imply the need of formalization of architec-
tural patterns based on mobility paradigms. At the moment we are using PoliS
to describe and study architectures including mobile agents [3]. We are study-
ing mobility from the architectural point of view: the study of assumptions
matching of mobile architectural components in the context of reconfigurable
architectures seems to be a very interesting research field. We are studying
these aspects that could be analyzed also in terms of security.

REFERENCES

[1] R. Allen and D. Garlan. Formalizing Architectural Connection. In Proc. 16th
IEEE Int. Conf. on Sw Eng., pages 71-80, Sorrento, Italy, 1994.

[2] G. Berry and G. Boudol. The Chemical Abstract Machine. Theoretical Com-
puter Science, 96:217-248, 1992.

[3] P. Ciancarini, F. Franzé, and C. Mascolo. A Coordination Model to Specify Sys-
tems including Mobile Agents. In Proc. 9th IEEE Int. Workshop on Software
Specification and Design (IWSSD), pages 96-105, Japan, 1998.

[4] P. Ciancarini, M. Mazza, and L. Pazzaglia. A Logic for a Coordination Model
with Multiple Spaces. Science of Computer Programming, 31(2/3):231-262,
July 1998.

[5] D. Garlan, R. Allen, and J. Ockerbloom. Exploiting Style in Architectural De-
sign Environments. In D. Wile, editor, Proc. 2nd ACM SIGSOFT Symp. on
Foundations of Software Engineering, volume 19:5 of ACM SIGSOFT Soft-
ware Engineering Notes, pages 175-188, New Orleans, USA, December 1994.

[6] P.Inverardi, A. Wolf, and D. Yankelevich. Checking assumptions in components
dynamics at the architectural level. In D. Garlan and D. LeMetayer, editors,
Proc. 2nd Int. Conf. on Coordination Models and Languages, volume 1282 of
Lecture Notes in Computer Science, pages 4663, Berlin, Germany, September
1997. Springer-Verlag, Berlin.

[7] D. Luckham et al. Specification and Analysis of System Architecture using
RAPIDE. IEEE Transactions on Software Engineering, 21(4):336-355, April
1995.

[8] J. Magee, N. Dulay, S. Eisenbach, and J. Kramer. Specifying Distributed Soft-
ware Architectures. In W. Schafer and P. Botella, editors, Proc. 5th European
Software Engineering Conf. (ESEC 95), volume 989 of Lecture Notes in Com-
puter Science, pages 137-153, Sitges, Spain, September 1995. Springer-Verlag,
Berlin.

