
1 MULTIPLE VIEWS IN SOFTWARE

ARCHITECTURE: CONSISTENCY AND

CONFORMANCE

POSITION PAPER

D. Le M�etayer�

and M. P�erin�

MULTIPLE VIEWS: SIGNIFICANCE AND PROBLEMS

The study of software architectures has grown as an autonomous discipline
recently. A widely accepted, and very general, characterisation of software
architectures can be sketched as follows [Shaw and Garlan, 1995]: \Software
architecture is the level of software design that addresses the overall structure
and properties of software systems". The success of this trend of work is based
on two major assumptions:

Much bene�t has to be gained from the description of software systems at
a high level of abstraction: pay-o�s are expected in terms of quality of de-
sign, maintenance, analysis, veri�cation, testing, communication between
developers, etc.

Software architectures involve speci�c concepts which require speci�c lan-
guages, techniques and tools.

�Irisa/Inria, Campus de Beaulieu, 35042 Rennes, France. Email: lemetayer/mperin@irisa.fr

1



2

The �rst assumption is hardly arguable in principle even if better tools and
architecture development environments are still needed to really assess the prac-
tical signi�cance of the whole approach.

The second assumption is sometimes questioned outside the emerging \soft-
ware architecture community" because a number of issues related to software
architectures have been studied in di�erent contexts in the past. Abstract (and
even �nite state) models of real systems have been used for a long time and
the notions of abstract interpretation [Cousot and Cousot, 1979] and property
preserving abstraction [Loiseaux et al., 1995] have been formalised and studied
extensively for various classes of programming languages (concurrent, sequen-
tial, functional, logic, etc.). Furthermore, as far as formalisms are concerned,
process calculi such as CSP or the �-calculus provide concurrency and synchro-
nisation features that can also be used to specify the communication protocols
between components in an architecture [Allen and Garlan, 1994, Radestock and
Eisenbach, 1996]; sophisticated facilities for modularity are o�ered by functional
languages of the ML family (SML, CAML, etc.) [MacQueen, 1985]; also syn-
chronous languages provide formal semantics of box and line drawings used for
describing real-time systems [Benveniste and Berry, 1991]. So it is legitimate
at this stage to put the speci�city of software architectures under scrutiny and
discuss whether it justi�es the development of a new research area.

First, as far as abstract interpretation is concerned, it should be noticed that
it has mainly been used in a bottom-up rather than a top-down fashion so far.
In other words, it has mostly been concerned with (a posteriori) analysis rather
than design and re�nement. So one interesting issue in the context of software
architecture would be the application of the abstract interpretation framework
to the re�nement of global properties. This would lead, strictly speaking, to a
\concrete interpretation" process.

Second, and more importantly, we believe that the doubts mentioned above
have been fuelled by the fact that the range of works published in this area so far
does not re
ect the generality of the approach. It turns out that most of them
are concerned with communication and synchronisation which is just one of the
aspects of a software architecture. In particular, non functional properties such
as security, performance, reliability and extensibility have not received enough
attention. But the study of each of these properties may require a di�erent
kind of decomposition of the software. For this reason, we believe that the
notion of \view" is crucial and deserves more consideration in the context of
software architectures. A number of variants of the notion of view have been
proposed in di�erent areas of computer science:

In development methods: for example RM-ODP descriptions [Bourgois
et al., 1998] include �ve viewpoints (enterprise, information, computa-
tional, engineering and technology); [Finkelstein et al., 1992] proposes a
framework supporting the de�nition and use of multiple viewpoints in
system development; UML also promotes the use of multiple views (as
collections of diagrams such as static structure, statechart, component
and deployment diagrams) to describe complex systems.



MULTIPLE VIEWS IN SOFTWARE ARCHITECTURE 3

In programming languages: Aspect Oriented Programming [Kiczales,
1996] puts forward a technique for the development of programs as col-
lections of aspects (such as synchronisation, communication, failure han-
dling, memory allocation) which isolate important design decisions that
would otherwise be scattered throughout the code.

In programming language semantics: the \action semantics" framework
[Mosses, 1996] de�nes the meaning of a program using a number of
\facets" (such as control 
ow, functional, declarative, imperative, commu-
nicative, etc.), each of them focussing on one speci�c kind of information
(control 
ow, data 
ow, scoping, memory, communications, etc.).

In database systems: most database management systems provide a fa-
cility for de�ning and querying views which can be seen as abstractions
of the actual database [Ullman, 1988]. Views are typically used to ensure
that speci�c �elds of the database are not accessible to certain classes of
users or to provide information that is not explicit in the actual database
(but can be derived from it).

The relevance of the notion of view for software architectures has already
been advocated in [Kruchten, 1995] but, to our best knowledge, no existing
ADL really supports the notion of multiple views. A major issue that must
be addressed before introducing multiple views in an ADL is the speci�cation
of the correspondences between the di�erent views. Ideally, a form of con-
sistency should be de�ned and automatic tools should be provided to help in
the design of an overall consistent architecture. The conformance of a system
with respect to a given architecture is another signi�cant issue. Although not
speci�c to the notion of view, this problem is compounded by the introduction
of multiple views. There may be a great diversity of views and it is unlikely
that one single technique can be appropriate to ensure conformance with re-
spect to each of them. None of the works on the variants of views mentioned
above provides solutions to the consistency and the conformance problems for
software architecture views, either because they do not rely on �rm theoret-
ical foundations or because they cannot be transposed to the general notion
of view that is required in the context of software architectures. We believe
that the study of these problems is a research direction of prime importance for
software architectures. In the rest of this position paper, we mainly focus on
consistency and summarise a preliminary approach that we are currently ex-
perimenting through two case studies: the speci�cation of security properties
of an information system and the design of a train control system.

CONSISTENCY AND HETEROGENEITY OF MULTIPLE VIEWS

In order to get the greatest bene�ts of the approach, the decomposition into
multiple views should be chosen in such a way that it minimises the depen-
dencies between views (otherwise little has to be gained from their separation).
However all the views ultimately relate to the implemented system and they



4

can rarely be completely independent. For example, the distribution view can
have some impact on the security view and the fault-tolerance view. Di�erent
views may even correspond to con
icting requirements: for instance adding a
communication link can improve fault tolerance but also have a negative e�ect
on security (because it may give rise to unwanted information 
ows).

The consistency problem is compounded by the inherent heterogeneity of
multiple view architectures: since there can be a great diversity of views, each
of them should be expressed in the framework (model, speci�cation language,
notation, etc.) that is best suited to its speci�c purpose. It is di�cult to imag-
ine a general and semantics based solution to the consistency problem in this
context. Previous work on consistency across speci�cation languages [Zave and
Jackson, 1993, Bowman et al., 1996] has considered either an intermediate lan-
guage or a common underlying implementation. For example [Bowman et al.,
1996] states that \n speci�cations are consistent if and only if there exists a
physical implementation which is a realisation of all the speci�cations, ie. all
the speci�cations can be implemented in a single system". This implementation
consistency is pictured in Figure 1.1.

view 1 view 2 view n

implementation

...

Figure 1.1 Implementation consistency

So in all cases mappings have to be de�ned from each view speci�cation
language to a single formalism. This solution may be appropriate when the
formalisms used to describe the views are not of a too di�erent nature (like
Z and LOTOS considered in [Bowman et al., 1996]), which is precisely not
the case for software architectures. So we believe that this \single formalism
mapping approach" would defeat the very purpose of the introduction of views
in software architecture. In other words, little would be gained, in terms of
veri�cation, if, to decide upon their consistency, all the views had to be merged
into a single all embracing speci�cation. We believe that the issues of consis-
tency and conformance should better be decoupled for a better separation of
concerns and an increased tractability. The approach that we are currently
experimenting can be sketched as follows:

Consistency: each view is represented as an uninterpreted labelled
graph. Graphs are widely used representations of software architectures
and all the views that we have considered so far (functional, distribution,
physical, security, etc.) can be expressed naturally in terms of graphs.
The fact that a view de�ned in a speci�c framework has �rst to be ex-



MULTIPLE VIEWS IN SOFTWARE ARCHITECTURE 5

pressed as a graph may be seen as a limitation of the approach. Note
however that the versatile nature of graphs and the fact that they are
uninterpreted makes this translation easier. The uninterpreted nature of
our graphs is a major departure with respect to previous work on consis-
tency across speci�cation languages: even if all the views are expressed
as graphs, each of these graphs may convey very di�erent kind of seman-
tic information. The only restrictions on graphs are expressed through a
collection of structural constraints (also called internal consistency rules),
which bear, for example on the number of nodes with a given label or the
number of edges (or paths) from (and/or to) a given node, etc. We con-
sider inter-view consistency as a local relation between two views2. This
relation is de�ned using a correspondence relation between the nodes (and
edges) of the two views plus structural constraints similar to the inter-
nal consistency rules. Our approach, which introduces a clear separation
between consistency and conformance, is depicted in Figure 1.2. The
potential shortcoming of this local approach (as opposed to the \single
formalism mapping approach") is that the number of correspondence re-
lations may grow quadratically (in the worst case) with the number of
views. We envision that the number of views will remain low though and
the expected bene�t is a lower complexity and a better understandability
of correspondence relations.

view 1 view 2 view n

implementation

... internal consistency

conformance
relations

inter-view concistency relations

Figure 1.2 Separation of local consistency and conformance

Conformance: in our approach, heterogeneity issues are isolated from
the de�nition of consistency for a better separation of concerns. We
believe that heterogeneity is better handled as a conformance problem
between each view and the actual system. By de�nition, there is no gen-
eral solution to this problem since the set of possible frameworks for the
de�nition of view is open-ended and potentially varied. Just to take an
example, there is very little in common between the proof that a pro-
gram satis�es a given data-
ow property and the veri�cation that the

2Consistency relations involving more than two views can be de�ned as well, but they didn't
turn out to be useful on the examples that we have treated so far.



6

bandwidth of a hardware bus is greater than a given threshold. Fur-
thermore, it should be noted that this conformance process can either be
bottom-up (recovering aspects of the architecture from the actual code) or
top-down and prescriptive (when a view can be compiled into executable
code, thus ensuring, by construction, that the actual system conforms to
the view). We have followed the latter approach in the work described in
[Holzbacher et al., 1997], which shows how the communication view can
be implemented as an e�ective coordinator.

The ideas put forward in this paper are still preliminary and we are currently
experimenting them on two case studies:

The speci�cation of the security aspects (con�dentiality, integrity) of the
information system of a research center: the di�erent views in this case
correspond to the services provided by the system: web server, rlogin
server, ftp server, etc. The consistency constraints are used to ensure
a global coherency of the security policy: for example, \if there is an
edge with security level l between two nodes (or sites) n1 and n2, there
should not exist any path between n1 and n2 in which all the edges have
a security level strictly less than l".

The design of a train control system: the relevant views are the functional
view, the distribution view and the physical view. An example of consis-
tency constraint is that the distribution view preserves the data 
ow of
the functional view (which is a path property between the related nodes).

It is too early to draw any conclusion from these ongoing experiences but we
feel that the approach sketched here is su�ciently practical to provide useful
help in the design of multiple view architectures. Further interesting issues
have emerged from these studies; among them let us just mention brie
y soft-
ware architecture analysis. The analysis of a software architecture gets more
complicated when the properties of interest are non functional. The reason is
that they can usually not be characterised by a predicate (they may even be
subjective). Instead of providing a yes/no answer, we must return a concise
and understandable piece of information that the user can estimate by himself.
For example, in the case of a security property, the output of the analysis can
be \for such a security breach to be possible, the intruder must be able to spy
network N and have access to machine M".

References

[Allen and Garlan, 1994] Allen, R. and Garlan, D. (1994). Formalizing archi-
tectural connection. In Proceedings of the 16th International Conference on

Software Engineering, pages 71{80. IEEE Computer Society Press.

[Benveniste and Berry, 1991] Benveniste, A. and Berry, G. (1991). The syn-
chronous approach to reactive and real{time systems. IEEE Trans. Autom.

Control, 9(79):1270{1282.



MULTIPLE VIEWS IN SOFTWARE ARCHITECTURE 7

[Bourgois et al., 1998] Bourgois, M., Franklin, D., and Robinson, P. (1998).
Applying RM-ODP to the Air Tra�c Management Domain. EATCHiP Tech-
nical Document (CSD/architecture), Eurocontrol, Brussels.

[Bowman et al., 1996] Bowman, H., Boiten, E., Derrick, J., and Steen, M.
(1996). Viewpoint consistency in ODP, a general interpretation. In Najm,
E. and Stefani, J.-B., editors, First IFIP International Workshop on Formal

Methods for Open Object-Based Distributed Systems, pages 189{204. Chap-
man & Hall.

[Cousot and Cousot, 1979] Cousot, P. and Cousot, R. (1979). Systematic de-
sign of program analysis frameworks. In Conference Record of the Sixth

Annual ACM Symposium on Principles of Programming Languages, pages
269{282.

[Finkelstein et al., 1992] Finkelstein, A., Kramer, J., Nuseibeh, B., Finkelstein,
L., and Goedicke, M. (1992). Viewpoints: A framework for integrating mul-
tiple perspectives in systems development. International Journal of Software
Engineering and Knowledge Engineering, 1(2):31{58.

[Holzbacher et al., 1997] Holzbacher, A. A., P�erin, M., and S�udholt, M. (1997).
Modeling railway control systems using graph grammars: a case study. In
Proceedings of the Second Conference on Coordination Models, Languages

and Applications, volume 1282 of LNCS, pages 172{186, Berlin.

[Kiczales, 1996] Kiczales, G. (1996). Aspect-oriented programming. ACM

Computing Surveys, 28(4es):154{154.

[Kruchten, 1995] Kruchten, P. B. (1995). The 4+1 view model of architecture.
IEEE Software, 12(6):42{50.

[Loiseaux et al., 1995] Loiseaux, C., Graf, S., Sifakis, J., Bouajjani, A., and
Bensale, S. (1995). Property preserving abstractions for the veri�cation of
concurrent systems. Formal Methods in System Design, 6(1):1{35.

[MacQueen, 1985] MacQueen, D. (1985). Modules for standard ML. Dept.
Computer Science, University of Edinburgh.

[Mosses, 1996] Mosses, P. D. (1996). A tutorial on action semantics. Technical
report, BRICS. Tutorial notes for FME'94 and FME'96.

[Radestock and Eisenbach, 1996] Radestock, M. and Eisenbach, S. (1996). Se-
mantics of a Higher-Order Coordination Language. In Ciancarini, P. and
Hankin, C., editors, Proceedings of the Conference on Coordination Models,

Languages and Applications, volume 1061 of LNCS, pages 339{356.

[Shaw and Garlan, 1995] Shaw, M. and Garlan, D. (1995). Formulations and
Formalisms in Software Architecture. In Computer Science Today, Recent

Trends and Developments, volume 1000 of LNCS, pages 307{323.

[Ullman, 1988] Ullman, J. D. (1988). Principles of database and knowledge-base
systems, Vol. I. Computer Science Press, Inc., Rockville, MD, USA.

[Zave and Jackson, 1993] Zave, P. and Jackson, M. (1993). Conjunction as
composition. ACM Transactions of Software Engineering and Methodology,
2(4):379{411.


