Characterizing Ar chitecture as Abstractions over the Software Domain*

Eydun Eli Jacobsen

Bent Bruun Kristensen

Palle Nowack

The MaerskMc-Kinney Moller Institutefor ProductionTechnology
OdensedJniversity, DK 52300denseM, Denmark
e-mail: {jacobsen pbkristensemowack}@mip.ou.dk

Abstract

The design of software architecture is seen as abstraction
over the software domain. In this perspective architecture
is characterized according to the process, the notation and
the principles involved. The characterization is seen from
aresearch and a practical point of view.

1 Intr oduction

In [6], [1] and [5] software architecture is
characterized—oreven defined—in various different
ways. In every software system, some architectureis
present. The problem is that the architectureis only
implicitly available. The architecturedid exist for the
developersduringthe designphaseput becausé wasnot
expressedxplicitly, the architectureeitherhasbeenlost,
or only hasbeenreproducedo someextentin the software
documentation.

None of the abore mentioneddefinitionsof software
architectureare usedin this article. Our overall thesisis
that softwarearchitecturas abstraction®ver the software
domain. The underlyingmodel of this thesisis presented
in [3]. Theimmediateconsequencesf this thesisinclude
that

(1) The software musthave beenproducedor at least
be anticipatedi.e. the softwaredomainmustexistin some
form. The softwaredomainis given by descriptions—the
focus during the architecturedesignis on thesedescrip-
tions. The result of the designis concrete/abstraaie-
scriptions (notation/diagramsin additionto the software
domain. But thereis no given sequence—tharchitecture
may be createdasa prescription of someanticipatedsoft-
ware.

(2) The architectureappearso be redundant descrip-
tions. Becausehe softwaredomainis availablethe archi-
tecturedesignseemgo beanadditionalandevenredundant
description.The challengés to clarify why it is necessary
to elaborateon the softwaredescriptionfo make anunder

*Thisresearclwassupportedn partby DanishNationalCentrefor IT
ResearchProjectNo. 74.

standing/ a mentalmodelexplicit, andto createabstrac-
tionsoverthe softwaredomain.

(3) Architecturedesignrequiresabstraction. Abstrac-
tion implies, in additionto organizationand delimitation,
the formationof conceptsat anotherabstractionlevel to-
gethemwith theuseof theconceptsatthatlevel. We abstract
fromirrelevantdetailsandconcretemattersgivenselected
perspecties. But we have to find, introduce andmotivate
theabstractiongandthe perspecties). Enoughexperience
in architecturedesignandinsightin the given application
is necessaryo beableto comeup with suggestionor the
right abstractions, andto decidewhich arethe correctand
promisingones.

(4) The natureof abstractionsover the software do-
mainis still partially unexploredandunfamiliar. In object-
orientedmodelingourabstractionareconcreten thesense
thatthe abstracmattersarerelatedto the problemandthe
usagedomains.Abstractionsover the softwaredomainare
different—probablymore abstractand unreal. The chal-
lengeis to clarify the essence of software abstractions, and
specifythe quality measurdor theabstractions.

(5) Thearchitecturelesignprocessnustbecoveredby
the software devel opment methodologies. Thearchitecture
is only superficiallyintroducedusuallyonly mentally de-
spitethefactthatlack of the supportof thisin the method-
ologies. Architecturedesignis difficult, and becausear-
chitecturedesignis not coveredby the methodologieshe
generakituationis thatwe have little experienceno good
examplesor prototypicalcases.The methodologieslo not
promote(theacceptancef) reuseof design—reusef code
is still therule.

Article Organization. In section2 we include a
model of the designphasein the software development
process.We alsoinclude a modelof the abstractiorpro-
cessesnvolved during the software developmentprocess.
The sectionappearsas an extract from [3]. In section3
we characterizehe architecturedesignin the perspectie
as abstractionsver the software domain—oganizedac-
cordingto the processthe notationandthe principlesof
thedesignphase We briefly commenbnthecurrentdiver
gencesetweerthetheoreticamodelsandpracticaluseof
softwarearchitecture.

2 Designand Abstraction

Model of the DesignPhase. Fromtheanalysigphasehe
problem domain model and the usage domain model are
available, cf. the generalmodel for object-orientedsoft-
ware developmentin [3]. In the designphasethe devel-
oper usesthe usagedomainmodel to refine the problem
domainmodelinto a systemmodel,andintroducesan ar-
chitecturemodel. Thesepartsare related,but an explicit
andabstractescriptionof thearchitecturenodelis essen-
tial. The architecturemodelgivesan supplementaryper
spectve,is typically apartialmodel,is abstractn thesense
generalizedand generic(parameterization)and describes
thelogical organizationof the systemmodelandthe (log-
ical) executionplatform. It describesvhich partsaredis-
tributed, which are concurrentwhich areto be persistent
etc. to enablethe developerto transformthe problemdo-
mainmodelinto aamodelthatcansupportheusageof the
systempnot only theunderstandingf it.

Problem Domain Model

@)
o o° .

o e Usage Domain Mod
@)

.
| —

System

Software Domain

User

Developer

Usage Domain

Figurel: DomainsandModelsof the DesignPhase.

Figurel (from [3]) illustratesthe modelof the design
phasewith theusagedomainandthesoftwaredomain.The
system model formsthe developers conceptiorof theinte-
grationof the problemandusagedomainmodelsat anab-
stractlevel. It is arefined,transformedandenrichedprob-
lemdomainmodel. Thesystenmodelalsosupportgheus-
ageof the systemandnot only the conceptiorof theprob-
lem domain.Thearchitecture model formsthedevelopers
conceptiorof thearchitecturef thesystemj.e. theoverall
structuresandtheir relationsandinteractions.It is an ab-
stractmodelover over the systemmodel. The modelfocus
on (the organizationof) the structureandinteractionem-
beddedn the systemmodel. The purposss to understand
the systemmodelgivena structure/interactioperspectie
on that model,to allow usto reasoraboutandexposethe
supportfor the non-functionalrequirementsand to map
the systemmodelonto the logical platform. The software
domain includesdescriptionspartialor complete pf some
software. Variousdesignnotationsareused.

Theresultof the designphaseis nota modelof some
existing domainsimilar to the problemdomainor the us-
agedomain. Rather it is a uniquedesign,somethingcon-
structedand createdby the developerbasedon his skills
and knowledge,and from the problemand usagedomain
models. After its constructionthe systemmodel and the
architecturenodelbothworksasmodelsin additionto the
problemandusagedomainmodels but from a specificde-
signperspectie.

Problem Domain Model

o

Usage Domain Mod
Functional
Requirements
Non-functional i
Requirements

Logical
Platform

System Model

()

Developer

Design Phase

Design Phase

Architecture
Model :

Figure2: TheDesignProcess.

Figure 2 (from [3]) illustratesthe designprocessits
inputsin theform of modelsandrequirementsandits re-
sultingmodels.The dottedrelationbetweerthe designar-
rowsin Figure2 symbolizeghatthe two designpartshave
influenceon eachother Onthe onehandthe problemdo-
main modelandthe systemmodelare the foundationfor
creatingthe architecture.The usagemodelis usedduring
thedesigrfor controllingthetransformatiorof theproblem
domainmodelinto the systemmodel. The usagemodel,
togetherwith the functional requirementssupply the in-
formationfor addingand distributing the functionality to
the problemdomainmodelto the extentthatthis informa-
tion is not alreadythere. The architecturas a constructve
solutionfor how the non-functionalrequirementsindthe
organizationof thelogical platformcanbe combined.The
architectureanodelcreatedoy the designarrow at the bot-
tom canhave crucial effect on the actualtransformatiorat
thetop arrov. The functional requirements is a setof re-
quirementoncerninghe capabilitiesof a system—what
the systemshouldbe ableto support. The non-functional
requirements is a setof requirementgoncerninghe non-
functionalqualitiesof a system—forexampleusability, se-
curity, efficiengy, correctnessreliability, maintainability
testability flexibility, understandabilityreusability porta-

bility, adaptability Thelogical platformis a descriptionof

the platform on which the systemis goingto be executed
but at a logical level—i.e. requirementsn termsof user
interface distribution, persistencandconcurreng.

Software Domain

Abstraction *
‘ Abstractions over the

Problem & Usage DomainL —=

Modeling
* Abstraction

Problem Domain Usage Domain

[Abstractions over th?

Software Domain

Figure3: Abstractions& Models.

Abstraction. Figure3 (from[3]) illustrateghedifference
andrelationbetweerntwo kindsof abstractionnvolveddur-
ing the softwaredevelopmentprocessDuring analysiswve
form abstraction®ver the problemdomainandthe usage
domain—theabstractiongnodelconceptsaandphenomena
in thesedomains.We needan understandingf thesedo-
mains and somenotationfor expressingthe abstraction.
During design(andimplementation)ve form abstractions
overthe softwaredomain—suchabstractionslo not model
anythingfrom theproblemandusagedlomaingatleastonly
indirectly). We needa notationfor describinga modelof
the software—wefocus on the software andwe form ab-
stractionsover the software. Suchabstractionsre (to a
certainextent) dependenof the notationusedfor the soft-
ware[5], but applicationdomainindependent.

Specialization & Aggregation &

Concepts

Generalization Decomposition

Exemplification Classification

Phenomena

Figure4: AbstractionProcesses.

Figure4 (from[3]) illustratestheabstractiorprocesses

in conceptualmodeling. Conceptualmodeling can be
seenasthe underlyingtheoreticalunderstandingf object-
oriented programmingalthough existing object-oriented
notationonly in alimited way supportghistheory But the
processesre fundamentabbstractiorprocesses An ob-
ject/classs seemasa modelof a phenomenon/concept—to
givetheclassof anobjectcorrespondso classification—to
give an objectof a classto exemplification. To let a (spe-
cialized)classinheritfrom a (generalxlasscorrespondo
form a specializatiorof that (general)class. To describe
a (whole) classby the useof referencego (part) objects
correspondso form anaggreyationof the (part) objects.

Abstractionscan supportboth the organizationof the
software (with respectto the developmentplatform) and
with respecto the (logical or physical)executionplatform.
Thelatteris describedyy the architecturemodel. The for-
mer, whichis coveredby for examplemoduledescriptions
and is importantfor software version and configuration
control, is not consideredpart of the architectureof the
systemand thereforenot discussedurther. Architectural
abstractionscan be supportedby meansof patterns[2],
frameavorks[4] andarchitecturenotation/language@\L’s)
[6]. Both patternandframenork technologiesare power
ful meansof capturingabstractionsver the software do-
main. Still the notationusedfor therepresentatioof these
is usual object-orientechotation—wesimulatethe archi-
tecturaldescription.Only preliminaryelementsf specific
architecturahotation/languageare available,andthe un-
derstandin@f thenecessargxpressie powerof suchano-
tation/languagess mainly capturedthrougharchitectural
styles(pattern-likeabstractionatthearchitecturdevel) [6]
and[1].

3 Characterization

In the previous sectiongthe designof software archi-
tectureis presentedas abstractionover the software do-
main. Giventhis perspectie we characterizarchitecture
accordingto the processthe notationandthe principlesof
the designphasefor the architecture . The characterization
is organizedasa numberof theses.The thesesarebased
on the previous section,andcanbe seenasrepresenting
researchpointof view of architecturalesign.This theoret-
ical characterizationis complementedy remarksfrom a
practicalpointof view. Thisview representacombination
of currentpractice gexpectationsyhatis actuallypossible,
etc.

Process. The processof the architecturedesignis char
acterizedasfollows:

Thesis: Ar chitecture designis innovative construction,
not just modeling or transformation. Designof archi-
tectureis notjustmodeling:Therearenodomaingo model

(likein theanalysigphasewherethedevelopercantake the
startingpointin the problemandusagedomains).Design
of architecturds not just transformation:Thereis no ex-
isting model available (like in implementatiorwherethe
modelresultingform the designhasto betransformednto
anothemodelatthe programmindanguagdevel).

In practice the innovative processegjive problems
both becausehey aredifficult andexpensve, andalsobe-
causehey arehardto controlandadministrate.

Thesis: Architecture design implies abstraction, not
just organization. By organizationwe meanthe pro-
cessof arrangingandrelatingsubpartof wholes. This re-
semblesaggreyationandassociatiorto a large extent. Ab-
stractionincludesorganization—irthesensehatsubstance
hasto beidentifiedanddelimited. But abstractioralsoin-
volvesclassificatiorand generalization—aiven chunkis
classifiedaccordingto variousexisting or nev concepts—
the conceptis relatedto other concepts. In additionthe
abstractions thereaftetreatedatits abstractevel.

In practiceit is straightforvard to organizematerial.
Duringthatprocessve getsomeknowledgeaboutthe ma-
terial. But by organizationonly we moreor lessjust view
informationat the givenlevel. To obtainimportantknowl-
edge,we have to abstract. Abstractionis muchmore de-
mandingthanorganization.

Notation. The notation applied during the architecture
designis characterizedsfollows:

Thesis: Architecture notation can be informal. Any
notation supportthe thinking of—and description of—
solutionsandmodels but it alsointroducedimitations. To
beinnovative we needexpressie freedom for exampleby
theuseof informal notation.

In practicewe seemto prefercomplete/formaspecifi-

cations,andwe needto includeall detailsalsoconcerning
thearchitecture Only with a formal notationthe power of
reverseengineeringanpossiblybe obtained.
Thesis: Ar chitecture notation can be several notations.
During the innovationof a modelsereral notationscanbe
appliedsimultaneouslypossiblyto variouspartial models
suchthateachof thesemodelscanbeexpressedn aspecial
notation(for exampletype of diagrams).In addition, the
modelscan be createdfrom differentperspecties—often
overlappingandcontainingredundaninformation.Redun-
dang supportgheunderstanding.

In practiceseveral notationsand correspondingnod-
els introducean inconsisteng problem. It is muchmore
corvenientwith one unifying (but insuficient) notation,
andit is muchmore straightforvard to handleone unify-
ing model. By differentperspectieswe usuallyintroduce
conflicting modelsto be resohed, andultimately we have
to chooseamongthe perspecties,or go througha compli-
catedprocesgo integrateandunify the perspecties.

Principles. The principles underlying the architecture
designarecharacterizedsfollows:

Thesis: Ar chitecture must be developedexplicitly. The

elementsncludedin themethodologieor architecturele-

sign arestill preliminary The resultof the designis not

describedxplicitly. Ourunderstandingf abstractiorover

softwareis still insufficient. The evolution processwhere
architecturalabstractionsand abstractionmechanismsof

architecturallanguagesare developedfurther by mutual

influencehasnot really started—ithasstartedwith archi-

tecturalstylesand patterns but the languagesrestill not

available.

In practicewe mostlydescribehearchitecturemplic-

itly asanintegratedpartof theothermodels.Whenit is ac-
tually explicitly described/illustratedt is usuallydonein
object-orientedanguagesasit is the casefor designpat-
ternsand frameworks. The architecturalabstractionsare
typically relatedto the problemand the usagedomains.
The abstractworld over the software domainis not ex-
ploredin praxis.
Thesis: Ar chitecture designmust be supportedby tools.
Principlesareusually(atleastpartially) supportedy tools.
Toolsrely on notation. Becauséhereis no unifying nota-
tion andthe notationis partially informal, etc.the toolsfor
architecturedesignare not very powerful—they aremore
like simpledrawing tools.

In practicethe tools constitutethe principles(andde-
fine the praxis)in mary organizationsToolsareimportant
for the processthe notationand the documentatiorstan-
dards.

References

[1] F Buschmann,R. Meunier H. Rohnert, P Sommerlad,
M. Stal. Pattern-OrientedSoftware Architecture: A System
of PatternsWiley & Sons,1996.

[2] E. Gamma, R. Helm, R. Johnson,J. Vlissides: Design
Patterns: Elementsof ReusableObject-OrientedSoftware.
Addison-Weésley, 1994.

[3] E. E. JacobsenB. B. Kristensen,P. Nowack: Models, Do-
mainsand Abstractionin Software Development.Proceed-
ings of InternationalConferenceon Technologyof Object-
OrientedLanguagesndSystems1998.

[4] R.E.JohnsonB. Foote:DesigningReusablé&lassesJournal
of Object-OrientedProgramming1988.

[5] B. B. Kristensen Architectural Abstractionsand Language
MechanismsProceedingsf the Asia Pacific SoftwareEngi-
neeringConferencel996.

[6] M. Shaw, D. Garlan: SoftwareArchitecture:Perspectieson
anEmeging Discipline.Prentice-Hall 1996.

