
Characterizing Ar chitecture asAbstractions over the SoftwareDomain
�

Eyðun Eli Jacobsen Bent Bruun Kristensen Palle Nowack

TheMaerskMc-Kinney Moller Institutefor ProductionTechnology
OdenseUniversity, DK 5230OdenseM, Denmark

e-mail: {jacobsen,bbkristensen,nowack}@mip.ou.dk

Abstract

The design of software architecture is seen as abstraction
over the software domain. In this perspective architecture
is characterized according to the process, the notation and
the principles involved. The characterization is seen from
a research and a practical point of view.

1 Intr oduction

In [6], [1] and [5] software architecture is
characterized—oreven defined—in various different
ways. In every software system, some architectureis
present. The problem is that the architectureis only
implicitly available. The architecturedid exist for the
developersduringthedesignphase,but becauseit wasnot
expressedexplicitly, the architectureeitherhasbeenlost,
or only hasbeenreproducedto someextentin thesoftware
documentation.

Noneof the above mentioneddefinitionsof software
architectureareusedin this article. Our overall thesisis
thatsoftwarearchitectureis abstractionsover thesoftware
domain. The underlyingmodelof this thesisis presented
in [3]. The immediateconsequencesof this thesisinclude
that

(1) Thesoftwaremusthave beenproducedor at least
beanticipated,i.e. thesoftwaredomainmustexist in some
form. The softwaredomainis givenby descriptions—the
focus during the architecturedesignis on thesedescrip-
tions. The result of the designis concrete/abstractde-
scriptions (notation/diagrams)in addition to the software
domain. But thereis no givensequence—thearchitecture
maybecreatedasa prescription of someanticipatedsoft-
ware.

(2) Thearchitectureappearsto be redundant descrip-
tions. Becausethesoftwaredomainis availablethearchi-
tecturedesignseemstobeanadditionalandevenredundant
description.Thechallengeis to clarify why it is necessary
to elaborateon thesoftwaredescription,to makeanunder-

�

Thisresearchwassupportedin partby DanishNationalCentrefor IT
Research,ProjectNo. 74.

standing/ a mentalmodelexplicit, andto createabstrac-
tionsover thesoftwaredomain.

(3) Architecturedesignrequiresabstraction.Abstrac-
tion implies, in additionto organizationanddelimitation,
the formationof conceptsat anotherabstractionlevel to-
getherwith theuseof theconceptsatthatlevel. Weabstract
from irrelevantdetailsandconcretematters,givenselected
perspectives.But we have to find, introduce,andmotivate
theabstractions(andtheperspectives).Enoughexperience
in architecturedesignandinsight in the givenapplication
is necessaryto beableto comeupwith suggestionsfor the
right abstractions, andto decidewhich arethecorrectand
promisingones.

(4) The natureof abstractionsover the software do-
mainis still partiallyunexploredandunfamiliar. In object-
orientedmodelingourabstractionsareconcretein thesense
that theabstractmattersarerelatedto theproblemandthe
usagedomains.Abstractionsover thesoftwaredomainare
different—probablymore abstractand unreal. The chal-
lengeis to clarify theessence of software abstractions, and
specifythequalitymeasurefor theabstractions.

(5) Thearchitecturedesignprocessmustbecoveredby
thesoftware development methodologies. Thearchitecture
is only superficiallyintroduced,usuallyonly mentally, de-
spitethefactthatlack of thesupportof this in themethod-
ologies. Architecturedesignis difficult, and becausear-
chitecturedesignis not coveredby the methodologiesthe
generalsituationis thatwe have little experience,no good
examplesor prototypicalcases.Themethodologiesdo not
promote(theacceptanceof) reuseof design—reuseof code
is still therule.

Article Organization. In section 2 we include a
model of the designphasein the software development
process.We also includea modelof the abstractionpro-
cessesinvolvedduring the softwaredevelopmentprocess.
The sectionappearsas an extract from [3]. In section3
we characterizethe architecturedesignin the perspective
as abstractionsover the software domain—organizedac-
cording to the process,the notationandthe principlesof
thedesignphase.Webriefly commentonthecurrentdiver-
gencesbetweenthetheoreticalmodelsandpracticaluseof
softwarearchitecture.



2 Designand Abstraction

Model of the DesignPhase. Fromtheanalysisphasethe
problem domain model and the usage domain model are
available, cf. the generalmodel for object-orientedsoft-
waredevelopmentin [3]. In the designphasethe devel-
oper usesthe usagedomainmodel to refine the problem
domainmodelinto a systemmodel,andintroducesan ar-
chitecturemodel. Thesepartsare related,but an explicit
andabstractdescriptionof thearchitecturemodelis essen-
tial. The architecturemodelgivesan supplementaryper-
spective,is typically apartialmodel,is abstractin thesense
generalizedandgeneric(parameterization),anddescribes
the logical organizationof thesystemmodelandthe(log-
ical) executionplatform. It describeswhich partsaredis-
tributed,which areconcurrent,which areto be persistent
etc. to enablethe developerto transformthe problemdo-
mainmodelinto aamodelthatcansupporttheusageof the
system,notonly theunderstandingof it.

Architecture

System
User

Usage Domain

Usage Domain Model

Problem Domain Model

Model

System Model

Developer

Software Domain

Figure1: DomainsandModelsof theDesignPhase.

Figure1 (from [3]) illustratesthemodelof thedesign
phasewith theusagedomainandthesoftwaredomain.The
system model formsthedeveloper’sconceptionof theinte-
grationof theproblemandusagedomainmodelsat anab-
stractlevel. It is a refined,transformedandenrichedprob-
lemdomainmodel.Thesystemmodelalsosupportstheus-
ageof thesystem,andnotonly theconceptionof theprob-
lemdomain.Thearchitecture model formsthedeveloper’s
conceptionof thearchitectureof thesystem,i.e. theoverall
structuresandtheir relationsandinteractions.It is anab-
stractmodeloverover thesystemmodel.Themodelfocus
on (the organizationof) the structureand interactionem-
beddedin thesystemmodel.Thepurposeis to understand
thesystemmodelgivena structure/interactionperspective
on thatmodel,to allow us to reasonaboutandexposethe
supportfor the non-functionalrequirements,and to map
thesystemmodelonto the logical platform. The software
domain includesdescriptions,partialor complete,of some
software.Variousdesignnotationsareused.

Theresultof thedesignphaseis not a modelof some
existing domainsimilar to the problemdomainor theus-
agedomain.Rather, it is a uniquedesign,somethingcon-
structedandcreatedby the developerbasedon his skills
andknowledge,andfrom the problemandusagedomain
models. After its constructionthe systemmodeland the
architecturemodelbothworksasmodelsin additionto the
problemandusagedomainmodels,but from a specificde-
signperspective.

System Model
Design Phase

Problem Domain Model

Usage Domain Model

Model

Design Phase

Developer

Architecture

Non-functional

Requirements
Functional

Requirements

Logical
Platform

Figure2: TheDesignProcess.

Figure2 (from [3]) illustratesthe designprocess,its
inputsin the form of modelsandrequirements,andits re-
sultingmodels.Thedottedrelationbetweenthedesignar-
rows in Figure2 symbolizesthatthetwo designpartshave
influenceon eachother. On theonehandtheproblemdo-
main modelandthe systemmodelare the foundationfor
creatingthearchitecture.Theusagemodelis usedduring
thedesignfor controllingthetransformationof theproblem
domainmodel into the systemmodel. The usagemodel,
togetherwith the functional requirements,supply the in-
formation for addinganddistributing the functionality to
theproblemdomainmodelto theextentthat this informa-
tion is not alreadythere.Thearchitectureis a constructive
solution for how the non-functionalrequirementsandthe
organizationof thelogical platformcanbecombined.The
architecturemodelcreatedby thedesignarrow at thebot-
tom canhave crucialeffect on theactualtransformationat
the top arrow. The functional requirements is a setof re-
quirementsconcerningthecapabilitiesof a system—what
the systemshouldbe ableto support.The non-functional
requirements is a setof requirementsconcerningthenon-
functionalqualitiesof asystem—forexampleusability, se-
curity, efficiency, correctness,reliability, maintainability,
testability, flexibility , understandability, reusability, porta-



bility, adaptability. Thelogical platform is a descriptionof
the platformon which the systemis going to be executed
but at a logical level—i.e. requirementsin termsof user
interface,distribution,persistenceandconcurrency.

Software Domain

Modeling

Abstraction

Abstraction 

Software Domain
Abstractions over the 

Problem & Usage Domains
Abstractions over the 

Usage DomainProblem Domain

Figure3: Abstractions& Models.

Abstraction. Figure3 (from[3]) illustratesthedifference
andrelationbetweentwo kindsof abstractioninvolveddur-
ing thesoftwaredevelopmentprocess.During analysiswe
form abstractionsover theproblemdomainandthe usage
domain—theabstractionsmodelconceptsandphenomena
in thesedomains.We needan understandingof thesedo-
mains and somenotation for expressingthe abstraction.
During design(andimplementation)we form abstractions
over thesoftwaredomain—suchabstractionsdonotmodel
anythingfromtheproblemandusagedomains(atleastonly
indirectly). We needa notationfor describinga modelof
the software—wefocuson the softwareandwe form ab-
stractionsover the software. Suchabstractionsare (to a
certainextent)dependentof thenotationusedfor thesoft-
ware[5], but applicationdomainindependent.

Phenomena

Specialization &

Generalization

Aggregation &

Decomposition

Classification

Concepts

Exemplification

Figure4: AbstractionProcesses.

Figure4 (from [3]) illustratestheabstractionprocesses

in conceptualmodeling. Conceptualmodeling can be
seenastheunderlyingtheoreticalunderstandingof object-
oriented programmingalthough existing object-oriented
notationonly in a limited waysupportsthis theory. But the
processesare fundamentalabstractionprocesses.An ob-
ject/classis seenasamodelof a phenomenon/concept—to
givetheclassof anobjectcorrespondsto classification—to
give anobjectof a classto exemplification.To let a (spe-
cialized)classinherit from a(general)classcorrespondsto
form a specializationof that (general)class. To describe
a (whole) classby the useof referencesto (part) objects
correspondsto form anaggregationof the(part)objects.

Abstractionscansupportboth theorganizationof the
software (with respectto the developmentplatform) and
with respectto the(logicalor physical)executionplatform.
Thelatter is describedby thearchitecturemodel. Thefor-
mer, which is coveredby for examplemoduledescriptions
and is important for software version and configuration
control, is not consideredpart of the architectureof the
systemandthereforenot discussedfurther. Architectural
abstractionscan be supportedby meansof patterns[2],
frameworks[4] andarchitecturenotation/languages(AL’s)
[6]. Both patternandframework technologiesarepower-
ful meansof capturingabstractionsover the softwaredo-
main.Still thenotationusedfor therepresentationof these
is usualobject-orientednotation—wesimulatethe archi-
tecturaldescription.Only preliminaryelementsof specific
architecturalnotation/languagesareavailable,andthe un-
derstandingof thenecessaryexpressivepowerof suchano-
tation/languagesis mainly capturedthrougharchitectural
styles(pattern-likeabstractionsatthearchitecturelevel) [6]
and[1].

3 Characterization

In the previoussectionsthe designof softwarearchi-
tectureis presentedas abstractionover the software do-
main. Given this perspective we characterizearchitecture
accordingto theprocess,thenotationandtheprinciplesof
thedesignphasefor thearchitecture.Thecharacterization
is organizedasa numberof theses.The thesesarebased
on theprevioussection,andcanbeseenasrepresentinga
researchpointof view of architecturedesign.This theoret-
ical characterizationis complementedby remarksfrom a
practicalpointof view. Thisview representsacombination
of currentpractice,expectations,whatis actuallypossible,
etc.

Process. The processof the architecturedesignis char-
acterizedasfollows:
Thesis: Ar chitecture designis innovative construction,
not just modeling or transformation. Designof archi-
tectureis notjustmodeling:Therearenodomainstomodel



(likein theanalysisphase,wherethedevelopercantakethe
startingpoint in theproblemandusagedomains).Design
of architectureis not just transformation:Thereis no ex-
isting model available (like in implementationwherethe
modelresultingform thedesignhasto betransformedinto
anothermodelat theprogramminglanguagelevel).

In practice the innovative processesgive problems
bothbecausethey aredifficult andexpensive,andalsobe-
causethey arehardto controlandadministrate.
Thesis: Ar chitecture design implies abstraction, not
just organization. By organizationwe meanthe pro-
cessof arrangingandrelatingsubpartsof wholes.This re-
semblesaggregationandassociationto a largeextent. Ab-
stractionincludesorganization—inthesensethatsubstance
hasto beidentifiedanddelimited.But abstractionalsoin-
volvesclassificationandgeneralization—agivenchunkis
classifiedaccordingto variousexisting or new concepts—
the conceptis relatedto other concepts. In addition the
abstractionis thereaftertreatedat its abstractlevel.

In practiceit is straightforward to organizematerial.
During thatprocesswegetsomeknowledgeaboutthema-
terial. But by organizationonly we moreor lessjust view
informationat thegivenlevel. To obtainimportantknowl-
edge,we have to abstract.Abstractionis muchmorede-
mandingthanorganization.

Notation. The notation appliedduring the architecture
designis characterizedasfollows:
Thesis: Ar chitecture notation can be informal. Any
notation support the thinking of—and descriptionof—
solutionsandmodels,but it alsointroduceslimitations.To
beinnovativeweneedexpressive freedom,for exampleby
theuseof informalnotation.

In practiceweseemto prefercomplete/formalspecifi-
cations,andwe needto includeall detailsalsoconcerning
thearchitecture.Only with a formal notationthepower of
reverseengineeringcanpossiblybeobtained.
Thesis: Ar chitecture notation can be several notations.
During theinnovationof a modelseveralnotationscanbe
appliedsimultaneously, possiblyto variouspartialmodels
suchthateachof thesemodelscanbeexpressedin aspecial
notation(for exampletype of diagrams).In addition,the
modelscanbe createdfrom differentperspectives—often
overlappingandcontainingredundantinformation.Redun-
dancy supportstheunderstanding.

In practiceseveral notationsandcorrespondingmod-
els introducean inconsistency problem. It is muchmore
convenientwith one unifying (but insufficient) notation,
andit is muchmorestraightforward to handleoneunify-
ing model. By differentperspectiveswe usuallyintroduce
conflictingmodelsto beresolved,andultimatelywe have
to chooseamongtheperspectives,or go througha compli-
catedprocessto integrateandunify theperspectives.

Principles. The principles underlying the architecture
designarecharacterizedasfollows:
Thesis: Ar chitecture must be developedexplicitly. The
elementsincludedin themethodologiesfor architecturede-
sign arestill preliminary. The result of the designis not
describedexplicitly. Ourunderstandingof abstractionover
softwareis still insufficient. The evolution processwhere
architecturalabstractionsand abstractionmechanismsof
architecturallanguagesare developedfurther by mutual
influencehasnot really started—ithasstartedwith archi-
tecturalstylesandpatterns,but the languagesarestill not
available.

In practicewemostlydescribethearchitectureimplic-
itly asanintegratedpartof theothermodels.Whenit is ac-
tually explicitly described/illustrated,it is usuallydonein
object-orientedlanguages,asit is thecasefor designpat-
ternsand frameworks. The architecturalabstractionsare
typically relatedto the problemand the usagedomains.
The abstractworld over the software domain is not ex-
ploredin praxis.
Thesis:Ar chitecturedesignmust besupportedby tools.
Principlesareusually(at leastpartially)supportedby tools.
Tools rely on notation.Becausethereis no unifying nota-
tion andthenotationis partially informal,etc.thetoolsfor
architecturedesignarenot very powerful—they aremore
like simpledrawing tools.

In practicethe toolsconstitutetheprinciples(andde-
fine thepraxis)in many organizations.Toolsareimportant
for the process,the notationandthe documentationstan-
dards.

References

[1] F. Buschmann,R. Meunier, H. Rohnert, P. Sommerlad,
M. Stal. Pattern-OrientedSoftwareArchitecture: A System
of Patterns.Wiley & Sons,1996.

[2] E. Gamma, R. Helm, R. Johnson,J. Vlissides: Design
Patterns: Elementsof ReusableObject-OrientedSoftware.
Addison-Wesley, 1994.

[3] E. E. Jacobsen,B. B. Kristensen,P. Nowack: Models,Do-
mainsand Abstractionin Software Development.Proceed-
ings of InternationalConferenceon Technologyof Object-
OrientedLanguagesandSystems,1998.

[4] R.E.Johnson,B. Foote:DesigningReusableClasses.Journal
of Object-OrientedProgramming,1988.

[5] B. B. Kristensen.ArchitecturalAbstractionsand Language
Mechanisms.Proceedingsof theAsiaPacificSoftwareEngi-
neeringConference,1996.

[6] M. Shaw, D. Garlan:SoftwareArchitecture:Perspectiveson
anEmergingDiscipline.Prentice-Hall,1996.


