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Abstract: Suppose one COTS (Commercial Off the Shelf) software supplier provides
an interpreter for a problem oriented language, another provides an
application generator for producing numerical solvers for a class of partial
differential equations, and a third produces a visualization package. A team
of domain specialists writes scripts in the problem oriented language to
define cases to be solved, uses the application generator to produce an
appropriate solver, solves the generated PDE, and uses the visualization
package to analyze the results and adjust the description of cases.

Such examples illustrate that large and long lived software systems can result
from the combined effort by various unrelated development organizations,
organizations not even known to one another. No single design authority, to
which the others report, has overall system responsibility.

Such examples also illustrate the importance for software architecture to
include relationships between entities that exist and are used during the
construction process, instead of focusing only on relationships between
entities that exist at runtime.

The needs for software architecture for such systems are not well met by the
existing literature.
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INTRODUCTION

The literature on software architecture, for instance as surveyed in
Shaw(1996), has largely focused on components in the sense of
computational entities that exist at runtime, and their connections in terms
of data and control transfer. Various styles of how the same computational
system could be structured have been studied, considering how the
structure could be analyzed, how individual components could be reused,
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and how the structure could be reused in other situations. Alternatively,
practitioners such as Whitney(1995), Tzerpos(1996), or Finnigan(1997),
have sometimes used software architecture as a focus on definition and use
relationships of entities that exist at runtime. These are, of course,
interesting issues, but in many situations they are not the dominant reasons
for the architectural structure adopted for the software system. Our
definition of the term software architecture is that it is a high level
description of a set of entities and their relationships, the understanding of
which is essential to the understanding of the overall structure of the
system. This is consistent with the definition other authors have used,
although the entities we might consider, and especially the relationships we
might consider, are broader than some other authors might take.

In some systems, physical considerations dominate the software
architecture. In these systems, any single computer might run several
software components, but software entities running on different computers
are definitely considered distinct components. The software architecture
thus reflects hardware architecture issues such as geographic locality,
bandwidth, unique hardware resources, redundancy for reliability,
replication for capacity, etc. It may also reflect organizational and
administrative realities of the operators, such as what functionality is
centralized, what functionality is replicated at each branch plant or even at
each workstation, and what functionality is provided by computers
belonging to the customers of the system operator, not those of the operator
itself.

In this paper we consider situations where the software is implemented
not by a single organization, but by a number of organizations, perhaps as a
prime contractor with subcontractors, perhaps as collaborating peers with
different competencies, or perhaps as suppliers and users of COTS
(Commercial-Off-the-Shelf) software products (Dean, 1997; Vigder, 1997).
The software development organizations contributing parts of the system
may not even be known to one another. These development organizations
may contribute parts of the system at very different levels of abstraction.

The situation where the development organizations are unrelated,
interacting only as suppliers and customers of COTS software products, is
particularly interesting, because it is so far from the traditional
development model. No single design authority, to which the others report,
has overall responsibility for the whole system, in that, by definition, each
COTS supplier implements his product to his own specification and
timetable determined by his perception as to the market demand, of which
this application is typically an inconsequential portion. Detailed



specifications and source code for COTS products are rarely available,
never mind possible to influence. More seriously, the maintenance and
evolution of each COTS component is done to its supplier's agenda, and
since obsolete versions usually become defunct, a long-lived system must
adapt to the change. When a part evolves and must be reintegrated, the
enhancement may not even be implemented by the supplier of the original
part — indeed, sometimes a plug-compatible part of completely different
design is substituted. Evolution of such systems typically results from the
evolution of the different parts, although the introduction of new parts and
changes in the relationship of parts can occur. The integrator who brings
together all the parts must find a software architecture that can use the
COTS products as they are, or as they might be in future. The integration
role may be substantial, or it may be quite small, and may even be
automated.

For systems of the kind considered here, there is often not simply a
single runtime. Often components are run to produce entities, even source
code, that will be used by other entities at a later runtime. It is thus
important in the software architecture also to include relationships between
entities that exist, or are used, during the construction process of other
entities. Some of the contributions, for instance macro packages, may no
longer be localized at runtime, although they may have been localized at
some earlier stage in the build process. Potential attributes of a component
generated during a run are often not determinable from specific instances
generated during particular runs, but may be inferred from the generating
subsystem and input it might be given. Tools used in the build process may
be essential in establishing that constraints required at the runtime of the
application itself are in fact satisfied. The build process itself thus must be
part of the software architecture. The system architect plans how the parts
are created and brought together. Fortuitously, box-and-arrow diagrams are
traditionally used both for explaining the build process and for explaining
the software architecture.

These issues will be illustrated by three thinly disguised examples of
real systems, systems implemented in the past that continue to be used and
to be evolved today.

A SIMPLE EXAMPLE

As a concrete example, consider a situation where one COTS software
supplier provides an interpreter for a special purpose problem oriented



language, another provides an application generator for producing
numerical solvers for a certain class of partial differential equations, and a
third produces a visualization package. The application of the system might
be, for instance, to analyze accidental fires. A team of domain specialists
writes scripts in the problem oriented language to define cases to be solved
in terms of geometry, fuels, atmospheric conditions, etc.; uses the
application generator to produce an appropriate solver given the
characteristics of a specific case; compiles the generated solver; solves the
generated PDE for that case; uses the visualization package to analyze the
results and adjust the description of cases; and then repeats the cycle.
Because the solution of each individual case is a significant investment, and
because investigation of an accident involves running many cases and
similar cases may show up in future, successful results from each case
would typically be stored in an object database, keyed by parameters that
characterize the case in the potential search space.

Model building :D Numerical solver :D Compiler
interpreter generator

Visualization ﬁ Solver
package runtime

Object
database

Figure 1. Superficial block-and-arrow diagram for example 1

At a sufficiently superficial level, the software architecture is simple
and uninteresting: a cycle of subsystems, each producing data for its
successor. A deeper level of software architecture elaborates on what
connecting to the successor subsystem really entails, on how to exploit
previous cases to reduce computational effort, and on how to recover from
computational failures such as might result from going beyond the domain
of applicability of the physical models or the numerical procedures.
Because COTS components produce their output in whatever



representation and sequence that they do, and because this is unlikely to
conform to the rigid representation and sequence required by the successor
COTS component, insertion of, at least, a filter between them is normally
required. In this example, as is often the case, more is needed. The COTS
components will not work for every input with which they might be
presented, and consequently the architecture must be extended to make
provision for exceptions that might be raised. Moreover, a COTS
component produces whatever output it produces, and some of this is not
actually used by the immediate succeeding component in the notional
cycle, but should be passed on through to subsequent components, in the
same way that passes in the traditional compiler pipeline burned through
intermediate language constructs not operated on until a later compiler
pass. Unfortunately, COTS components are unlikely to make provision for
simply passing through input that they do not intend to process, so the glue
components must facilitate such data bypassing the COTS component.
Thus the glue components are normally more general than simple filters.

In this example, the connectors between the components in the
superficial view of the architecture are wildly different. At some level this
is sufficient, because it shows where dominant relationships exist — and do
not exist. At a deeper level we need to understand what they are. The
output of the first component, the model builder, is three different kinds:
mathematical formulae which are the partial differential equations and also
the description in space of the region of integration; mathematical facts
which have been proved or are to be assumed about these formulae; and
large numerical arrays that represent initial values, boundary conditions,
and other parameter values. Only the mathematical facts and the
mathematical formulae, together with a few of the parameter values, are
required by the second component, the application generator. This
application generator uses these facts and formulae to select among various
choices of algorithms and data structures to produce source code for a
numerical solver optimized to the particular kind of problem to be solved
and the kind of computational resources available to solve it. The first
connector thus filters a data stream, possibly reordering typed items and
changing their representation. The second connector is a very simple pipe,
taking the source code produced by the application system and feeding it to
a compilation system. The third connector is more complicated, for it must
run the executable image produced by the compilation system, and make
available to it the numerical arrays and parameters produced by the model
builder. Classically, the fourth connector could be very simple, for
numerical solvers wrote their results to files which were later subject to



analysis by techniques such as visualization. The visualization might also
have required the full output from the model builder. Today, however,
visualization is often used interactively to steer the computation as it
proceeds, so in addition to inspection of stored partial or complete results,
this connector must support debugger-like actions. The final connector,
from the visualization package back to the model builder, is simply revising
the scripts that define the problems, and is probably accomplished by a
standard editor.

USES FOR A SYSTEM ARCHITECTURAL
DESCRIPTION

By looking at how we might use the architectural description of a
system, we can learn more about what it might contain, and how it would
be usefully represented. Who is the high level description for?

1.1 High level description during planning stages

From the literature, one might conclude that the principal use of an
architectural description of a system was as a high level planning
document, to agree upon what must be done and what it would be nice to
do, then to derive specifications for the components to be implemented.
Such a top down approach can be effective where all the components have
to be designed, or even when some of them pre-exist and either the others
must be designed to accommodate them or glue must be specified. It can be
used to establish properties such as completeness and correctness, and to
analyze for properties such as capacity and concurrency. It can be studied
for examining dependencies of partial results, and hence for identifying
opportunities for phasing computation and so reducing instantaneous
demand for memory and other resources. It can be used to study
communication requirements between components and hence to assess
suitability for distribution in the sense of what should run on which node of
a network. If the software system was to be operated jointly by a collection
of organizations, the software architecture might be used to study
distribution, in the sense of suggesting which components and which
responsibilities be given to which organizational units. If the system is to
be sold as a commercial product to many different customers, the software
architecture might suggest packaging for optional configurations. The
software architecture can also serve as a documentation framework,



identifying where to record assumptions and dependencies between
components.

For software to be implemented jointly by a collection of organizations,
a software architecture can provide a framework for considering a number
of acquisition and implementation questions which are nontechnical but
with potentially technical consequences. What constraints are implied by
available components that could be used? Where would separate suppliers
of components possibly be effective in reducing cost or improving time to
completion? Where does intimate dependency on the same technology
imply that the same subcontractor should be used to avoid duplication of
startup effort or to avoid errors due to conflicting interpretations? How
should implementation responsibilities be divided to correspond to the
competencies of different collaborators? And for systems where corporate
or national security is an issue, what are the security clearance implications
for the implementers of different components?

1.2 High level description during operation

During operation of the system, the primary use of a system
architectural description is tutorial. Because integration of components is
often not seamless, the operators of the system often need to be aware of
the roles of different components in the production system, and the
software architecture often is a useful framework for teaching them. For
example, systems often are designed with metering for monitoring and
tuning purposes. The significance of such measurements depends on the
system architecture, and hence the operator needs to understand the system
architecture in order to properly interpret the measurements and act on
them. As another example, operational problems often arise in the
production use of systems not because of bugs in the implementation, but
because intrinsic limitations in the underlying science restrict the domain of
applicability, or because choices made during implementation in the
absence of knowledge turn out not to be consistent with operational
experience. When such problems arise, the operator needs to understand the
architecture well enough to recognize the situation and the source of the
problem, to take corrective action, and to plan workarounds. Also, as
mentioned earlier, the software architecture can be useful for establishing
operational responsibilities for different organizational units. Note that
operators like this rarely have programming skills.



1.3 High level description during maintenance

Day-to-day maintenance is normally finding and fixing minor bugs,
mis-configurations, and interoperability conflicts. Minor enhancements
may also be included. For systems that operate nonstop for extended
periods, simply monitoring for outages and interpreting logs is often
difficult, and the maintainers not only need to understand the software
architecture generally but may need to make detailed reference to it in order
to localize and eventually isolate errors. Often attempting the repair
immediately is not possible, so through knowledge of the software
architecture a workaround must be found. Organizing for and actually
conducting the repair requires detailed just-in-time learning of the code at
the site of the error, as well as at other affected sites. An understanding of
the software architecture of the system is key to knowing what to study and
the context in which it must be understood. Unfortunately, the skill level of
staff employed for this kind of maintenance is often less than that of the
initial developers or developers involved in major enhancements.

1.4 High level description during major evolution

Major evolution of an existing system has much in common with initial
implementation, except that because it is incremental there is more
incentive to maximize reuse of components from the previous release, as
well as to ensure interoperability with data, including control data,
produced by or for the previous release. Working out a strategy for actually
carrying out the upgrade or replacement of a component is particularly
important, especially in nonstop systems. Planning as to how to add a new
component or to make other architectural changes is important, and
requires a solid understanding of the existing software architecture. That
understanding can lead to identification of required competencies and
appropriate allocation of responsibilities to carry out the change. However,
such changes are relatively rare. The dominant kind of change, especially
for a successful architecture, is change by upgrade of a single component.

A SECOND EXAMPLE

Another example where the software architecture is dominated by pre-
existing components, although not in this case COTS software, is a training
system for operators of an embedded system, such as a weapons fire



control system, a SCADA (sensor control and data acquisition) system, or a
command and control system for air traffic control. For such systems, it is
often essential that new operators be trained on the real system, warts and
all. Only that way will the new operators get an appropriate sense of the
real system's capabilities and limitations, and get the feel of its
responsiveness in real time. Consequently, the core component of such a
training system is an instance of the real embedded system. There are three
other subsystems in the training system. One other component is a
debriefing subsystem. This is a subsystem that is able to record the
student's actions, in real time, as the system responds to interesting
situations, so that an instructor can go back through the situations with the
student to point out where the student has done well, where the student has
used bad judgement or made errors, and what the consequences of these
have been. Because real time is an essential aspect of such situations, it is
necessary not just to rely on probes into the real system to log the displays
produced by the system together with the student's responses to them. It is
also necessary to log video and audio of the student's off-line activity,
especially where there are several operators working together
simultaneously with the system. Many parts of this subsystem pre-exist.
Another important subsystem is the world modeller. The real embedded
system interacts with the real world through various sensors and actuators,
and since use of the real sensors and actuators may be impractical for
training purposes, they must be carefully simulated. The real sensors and
actuators are not independent of each other, but are coupled at least through
the real world, so the simulated world for the training system must properly
model such interactions. Adequate simulation of the real world requires
sufficiently precise modelling of the physical situation, with adequate
computational power and typically with a great deal of empirically
determined data. It also requires an understanding of what approximations
and shortcuts can be taken to meet real time performance without losing
simulation fidelity. Such a simulated world may be a valuable asset that
must also be used with trainers for other embedded systems. Of course to
carry out the pedagogical purpose of the training system, the world
simulator has to be directed to produce scenarios illustrating situations that
the students are to be taught to deal with. Thus the last subsystem is a
scenario editor for the simulated world. Obviously scenario development
happens at a different runtime than the students lesson. A final wrinkle in
such training systems is that qualified instructors are usually in short
supply, so the whole training system is partially replicated to allow several
students to be trained simultaneously.



Scenario @ Scenario
aditnr

Simulated world Embedde Monitoring and
model <:::> d svstem <:::> debriefing system

Figure 2. Superficial block-and-arrow diagram for example 2

This example is interesting because qualifications for implementing
each of the four subsystems are quite different. The real embedded system
was implemented, and is frequently upgraded, by whoever, typically a
systems contractor expert in the sensors and actuators and signal
processing. The debriefing system is best implemented by a company well
versed in pedagogical techniques, so that it will be easy to capture and to
replay appropriate aspects of the student's actions. The simulated world
subsystem is best done by a company with strong scientific computing
credentials in the appropriate science. The scenario editing subsystem is
best implemented by a company that combines usability skills with a clear
understanding of what scenarios will be needed.

The example is also interesting because at a superficial level,
understanding the relationships between the four subsystems is simple. Any
attempt to provide a complete and correct description of all the interactions
becomes mired in detail.

A THIRD EXAMPLE

In next example, the COTS software merely provide a platform on
which the system is built rather than performing substantial parts of the
computation itself, but limitations of the COTS components are the major
cause of architectural choices, with anticipated implementation churn
during evolution of these components also playing a role. The system itself
is a small but long-lived interactive exhibit for displaying to the public
current information about air quality. Two different kinds of information



are presented in the exhibit. The first is descriptive material which is
generally static but changes occasionally, for instance when administrative
or legal actions affect what is being described. The second kind of
information displayed is trends in recent measured data from a network of
online monitoring stations. The core of the exhibit is a program written in
the proprietary language of a commercial authoring system. This provides
facilities from user dialogs to visual effects, and allows the exhibit designer
to focus on effective communication with users instead of on
implementation. Unfortunately, the authoring system has functionality
deficiencies. The first is that it cannot generate and display the multicolour
time series graphs required to display trends. This is solved by a plug-in
available from a third-party supplier, together with some glue to remap data
structures. The second deficiency is more serious: the network of
monitoring stations must be polled by dial-up modem and the
measurements accumulated to be shared by several instances of the exhibit,
but the language of the authoring system, even with plug-ins, is too weak to
support the error handling or concurrency control to do this. The solution is

Descriptive
database

::> Exhibit program
generator

J

Scriptable !
. Circular Exhibit program
terminal emulator |:> buffer |::> (replicated)
Dial-up
lines

|

3" party graphing

Network of i plug-in
sensor stations

Figure 3. Superficial block-and-arrow diagram for example 3




that the exhibit uses read-only optimistic concurrency control to read from
a shared database (conceptually a circular buffer of records) maintained by
another program. The program maintaining the database is written in
another proprietary language, this one being the communications control
language of a terminal emulator. The problem of being able to keep the
descriptive material up to date without manually updating the whole exhibit
each time some fact changes is addressed by keeping all the relevant
descriptive material in a database, and using scripts in the database
language to walk the database and generate the pages for the authoring
system whenever a change is needed. Since the descriptive material
includes multimedia items such as pictures, sound and video, an
appropriate commercial product is used.

The principal use for the system architectural description here is to
explain to the front line nontechnical maintenance staff what actions to take
when needed. Regeneration of the pages of descriptive material works well
as long as maintenance personnel understand they need to update the
database, and do not attempt to change the pages directly. Reorganizing the
pages calls for different skills, but happens rarely. The monitoring stations
have been a continuing source of operational problems: changed passwords
block access, station identification is arbitrarily changed, modems go
offline for periods stretching into months, stations are shut down and new
ones are opened, data format is changed, manual editing of data at the
monitoring stations produces records out of sequence, etc. Since the
monitoring stations are operated by a different government agency, changes
occur without notification and they are not responsive to requests for
explanation, much less remediation. Accommodating such situations
frequently requires manual intervention, but bullet-proofing the system, so
that it reports on detected problems and continues to operate, is mandatory
and has architectural implications. The most troublesome problems
however have been upgrades to the platforms: the hardware on which the
exhibit runs, the operating system on that hardware, and the versions of the
various COTS components. These are typically upgraded without notice,
and not infrequently the newest versions no longer interoperate
successfully. The conflicts are usually easy to resolve, but require technical
support. Since technical support is hundreds of miles away and on a time
and materials basis, front line support must have a sufficient understanding
of the software architecture to localize the problem, perform simple
corrective procedures such as reinstalling components, and report
symptoms.



CONCLUSIONS

Systems with characteristics similar to the examples cited are being
developed all the time. The prime purposes of the architecture descriptions
of such systems have been for communication with, and analysis by, other
people — automated analysis has not been a priority. Architectural styles
are not a central issue. For communicating with people, excessive
formalism is not necessarily more effective, and text-only descriptions have
also proved to have shortcomings. While not entirely satisfactory, the use
of block-and-arrow diagrams, supplemented by text, has proved sufficient
for the uses cited. What shortcomings have been apparent relate to having
consistent presentations of the software architecture at various depths and
from different points of view. Too much detail irrelevant to one's current
interest is obfuscating.

Perhaps the flaw lies in thinking of the system architectural description
as a single document, manually composed, and viewed in its entirety.
Instead, we could think of a set of reports generated from a common
database (Finnigan,1997), in the way some re-engineering tools present
facts gleaned from existing source code. The central focus would be the
cognitive psychology focus of how to make the presentation
comprehensible, rather than the computer science focus of how to make the
basis general and precise.

In practice, the decomposition into CSCI (Computer Software
Configuration Items) for projects constructed under 2167a, and indeed the
description of the individual CSCI themselves, often reflected more the
competencies of, and relationships between, the prime and the various
subcontractors than it did functionality, data access, or allocation of
software to hardware. Perhaps this was not so wrong!
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