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Abstract

Research in Software Architectures has put forward the concept of connector
to express complex relationships between system components, thus facilitating the
separation of coordination from computation. A system can then be understood,
at a given level of abstraction, in terms of its components and the connectors that
establish how they interact. However, for systems in which many interconnections
exist between their components, the architectures themselves may become very
complex due to the high number of connectors in place. This is especially true in
the context of mobile systems in which the interconnections are, by nature, tran-
sient in the sense that, at a given instant of time, only a subset of the potential
connectors are actually effective. In this paper, we formalise a notion of transient
connector that allows, at any given moment, for the architecture to depict only the
connectors that are active and, in this way, capture the dynamics of architectures
themselves. Our approach is based on the use ofCOMMUNITY, a UNITY-like pro-
gram design language that has a semantics in Category Theory, and rewriting logic
as a means of capturing the dynamic aspects of connectors.

1 Introduction

In a previous paper [16] we have argued in favour of a disciplined approach to mo-
bility through the use of connectors (in the sense of software architectures). The idea
is that mobility within a system can be characterised by the transient nature of the in-
terconnections that exist between the components of the system. Because, from an
architectural point of view, such interconnections are best captured through the use of
connectors [15], changes in the interconnections should be also captured at the level of
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the connectors that are in place.
For that purpose, we defined connectors which, through guarded actions, were able

to set or reset interconnections between components according to given conditions of
applicability (coded in the guards of the actions). However, because the dynamic be-
haviour of the system may require a considerable number of different situations in
which such interconnections should apply, the architecture of the system may get clut-
tered by a high number of connectors, even if, at each given time, only a few of the
applicability conditions hold.

To circumvent this problem, we suggested in [17] the concept of a transient connec-
tor in the sense of a connector with an associated condition on the state of its roles that
determines the situations in which it applies. The idea is that a connector does not need
to be permanently part of an architecture, but is added and removed according to its
applicability condition. This can be seen as a restricted form of dynamic architectures
in which the evolution of the architecture is determined by well defined operations of
addition and removal of connectors that are to be performed in well determined states
of the underlying system.

Our purpose in this paper is to expand the original motivation and further develop
the notion of transient connector in the context of dynamic architectures, namely by
providing a well-defined mathematical semantics through which the evolution of the
architecture can be inferred and reasoned about. Capitalising on previous work on
the formalisation of architectural connectors in general [5], and connectors for mobile
systems in particular [16], we use Category Theory to represent software architectures.
For modelling the dynamic aspects of architectures, we use Rewriting Logic [10], a
formalism that has already been applied to the formalisation of several architectural
aspects of systems, e.g. [11, 12]. We illustrate the approach with a connector for
partial synchronisation of actions written inCOMMUNITY [6].

2 Preliminaries

Our example is inspired in the luggage distribution system also used to illustrate Mobile
UNITY [14]. One or more carts move on aN units long track with the shape

→

??
??

??

� �
� �
� �

↑

A cart advances one unit at each step in the direction shown by the arrows. Thei-th cart
starts from a unit determined by an injective functionstart of i. Carts are continuously
moving around the circuit. Their movement must be synchronised in such a way that
no collisions occur at the crossing.

COMMUNITY [6] is a program design language based onUNITY [2] andIP [7]. In
this paper we only consider a subset of the full language. For our purposes, aCOMMU-
NITY program consists of a set of typed attributes, a boolean expression to be satisfied
by the initial values of the attributes, and a set of actions, each of the formname: [guard
→ assignment(s)]. The empty set of assignments is denoted byskip . Action names
act asrendez-vouspoints for program synchronisation. At each step, one of the actions
is selected and, if its guard is true, its assignments are executed simultaneously. To be
more precise, syntactically a program has the form
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program P is
var V
read R
init I
do a1: [g1→ v11 := exp11 ‖ v21 := exp21 ‖ . . . ]
[] a2: [g2→ v12 := exp12 ‖ . . . ]
[] . . .

whereR are external attributes (i.e., the program may not change their values),V are
the local attributes,I is the initialisation condition onV, ai are the actions with boolean
expressionsgi overV ∪R, vi j ∈V, andexpi j expressions overV∪R.

The following program describes the behaviour of thei-th cart.

program Carti is
var l : int
init l = start(i)
do move: [true→ l := (l + 1) modN]

We henceforth omit the “modN” operation and the action guards whenever they are
“true”.

A morphism from a programP to a programP′ states thatP is a component of the
systemP′ and, as shown in [6], captures the notion of program superposition [2, 7].
Mathematically speaking, the morphism maps each attribute ofP into a attribute ofP′

of the same type, and it maps each action nameg of P into a (possible empty) set of
action names{g′1, . . . ,g

′
n} of P′ [16]. Those actions correspond to the different possible

behaviours ofg within the systemP′. These different behaviours usually result from
synchronisations betweeng and other actions of other components ofP′. Thus each
actiong′i must preserve the functionality ofg, possibly adding more things specific to
other components ofP′. In particular, the guard ofg′i must not be weaker than the guard
of g, and the assignments ofg must be contained ing′i .

It can be proved thatCOMMUNITY programs and their morphisms form a category
in which every finite diagram has a colimit, which, by definition, is the minimal pro-
gram that contains all programs in the diagram. Thus the diagram specifies the archi-
tecture and the colimit represents the resulting system. Since the proof of the existence
of a colimit is constructive, the architecture can be “compiled” into a single program
that simulates the execution of the overall system.

3 Transient Connectors

A n-ary connector consists ofn roles Ri and one glueG stating the interaction be-
tween the roles. These act as “formal parameters”, restricting which components may
be linked together through the connector. Thus, the roles may contain attributes and
actions which are not used for the interaction specification.

Applying these ideas to connectors [5], for each roleRi there must be a channel
Ci together with morphismsγi : Ci → G andρi : Ci → Ri stating which attributes and
actions ofRi are used in the interaction specification, i.e., the glue. As channels just
establish the required relationships between action names, their actions are always of
the forma: [true→ skip ], and thus in this paper we use the abbreviated notation

channel C is
read v1 : T1; . . .
do a1,a2, . . .
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The categorical framework also allows one to make precise when ann-ary con-
nector can be applied to componentsP1, . . . ,Pn, namely when morphismsιi : Ri → Pi

exist. This corresponds to the intuition that the “actual arguments” (i.e., the compo-
nents) must instantiate the “formal parameters” (i.e., the roles). As an illustration, an
instantiated binary connector has the diagram

P1 R1
ι1oo C1

ρ1oo γ1 //G C2
ρ2 //γ2oo R2

ι2 //P2

We proposed in [17] the use of transient connectors as consisting of a pair〈I ,T〉
whereT is a connector andI is a boolean expression, called interaction condition, over
the attributes of its roles.

Returning to our example, assume that two carts are approaching the crossing and
one of them is nearer to it. To avoid a collision it is sufficient to force the nearest cart
to move whenever the most distant one does. That can be achieved using an action
subsumption connector. Actiona subsumes actionb if b executes whenevera does.
This can be seen as a partial synchronisation mechanism:a is synchronised withb, but
b can still execute freely. The connector that establishes this form of interaction is

channel F is
do a

a7→move

��

a7→a //
program G is
do ab: [skip ]
[] b: [skip ]

channel N is
do b

b7→{ab,b}oo

b7→move

��
program Far is
var fl : int
do move: [fl:=fl+1]

program Nearis
var nl : int
do move: [nl:=nl+1]

Notice that although the two roles are isomorphic, the binary connector is not sym-
metric because the glue treats the two actions differently. This is clearly indicated in
the glue: “b” may be executed alone at any time, while “a” must co-occur with “b” if
the interaction is taking place. Hence, action “a” is the one that we want to connect
to the “move” action of the cart that is further away from the crossing, while action
“b” is associated to the movement of the nearest cart (the one that will instantiate role
“Near”).

To complete the example, it remains to show what the interaction condition is, and
what system is obtained through role instantiation. Assuming that track units 7 and 28
cross and that movement coordination should start when both carts are at most 3 units
away from the crossing, one has

I = 0≤ 7−nl < 28− f l ≤ 3∨0≤ 28−nl < 7− f l ≤ 3

The first disjunct treats the case when the nearest cart is moving towards track unit 7
and the other cart is approaching unit 28. The other disjunct handles the opposite case.

However, whereas with permanent connectors the configuration of a system could
be represented in a mathematically simple way as a (complex) diagram whose colimit
returns the behaviour of the system, with transient connectors we avoid the explosion
of connectors that clutters the configuration diagram, but we need to provide a mathe-
matical semantics for them.
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4 Transient connectors as rewrite rules

Rewriting logic [8, 9] expresses an essential equivalence between logic and computa-
tion in a particularly simple way. Namely, systemstatesare in bijective correspondence
with formulas(modulo whatever structural axioms are satisfied by such formulas: for
example, modulo the associativity and commutativity of a certain connective) and con-
currentcomputationsin a system are in bijective correspondence withproofs(modulo
appropriate notions of equivalence between computations and between proofs). Given
this equivalence between computation and logic, a rewriting logic axiom of the form

t −→ t ′ if C

has two readings. Computationally, it means that a fragment of a system’s state that is
an instance of the patternt canchangeto the corresponding instance oft ′ concurrently
with any other state changes when conditionC holds; that is, the computational reading
is that of alocal concurrent transition. Logically, it just means that we can derive the
formula t ′ from the formulat whenC holds; that is, the logical reading is that of an
inference rule.

Rewriting logic is entirely neutral about the structure and properties of the formu-
las/statest. They are entirelyuser-definableas an algebraic data type satisfying certain
equational axioms, so that rewriting deduction takes placemodulosuch axioms. More
precisely, asignaturein rewriting logic is an equational theory(Σ,E), whereΣ is an
equational signature andE is a set ofΣ-equations. Rewriting will operate on equiva-
lence classes of terms moduloE. In this way, rewriting is made free from the syntactic
constraints of a term representation and gain a much greater flexibility in deciding what
counts as adata structure; for example, string rewriting is obtained by imposing an as-
sociativity axiom, and multiset rewriting by imposing associativity and commutativity.
Of course, standard term rewriting is obtained as the particular case in which the set
of equationsE is empty. Techniques for rewriting modulo equations have been stud-
ied extensively [4] and can be used to implement rewriting modulo many equational
theories of interest.

Given a signature(Σ,E), sentencesof rewriting logic are sequents of the form

r : [t]E −→ [t ′]E if C,

wherer is a label,t andt ′ areΣ-terms possibly involving some variables,[t]E denotes
the equivalence class of the termt modulo the equationsE, andC is a condition ex-
pressed as a conjunction of equations or sequents of the form[ui ] −→ [vi ]. A rewrite
theoryR is a 4-tupleR = (Σ,E,L,R) whereΣ is a ranked alphabet of function symbols,
E is a set ofΣ-equations,L is a set oflabels, andR is a set of sentences as described
above, calledrewrite rules.

Because of its neutrality with regard to the structure and properties of states and
formulas, rewriting logic has good properties as asemantic framework[10], in which
many different system styles and models of concurrent computation and many different
languages can be naturally expressed without any distorting encodings.

For instance, aCOMMUNITY program can be represented as a rewrite theory whose
signature defines state configurations as sets of pairs〈a : T | val : v〉 with a a program
attribute,T a type, andv a value of typeT, and every actiona as a rewrite rule:

a :
〈a1 : T1 | val : x1〉 . . . 〈an : Tn | val : xn〉
−→ 〈a1 : T1 | val : exp1(x1, . . . ,xn)〉 . . . 〈an : Tn | val : expn(x1, . . . ,xn)〉

if g
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whereg, the guard of the action, is a condition on thexi . In this case, the equational ax-
iomsE modulo which we rewrite are the associativity and commutativity of set union,
which is expressed in such rule by empty syntax (juxtaposition).

Graph rewriting has also been represented in rewriting logic [10]. Labelled graphs
are axiomatised equationally as an algebraic data type in such a way that graph rewrit-
ing becomes rewriting modulo the equations axiomatising the type. Axiomatisations
in this spirit include those of Bauderon and Courcelle [1], Corradini and Montanari
[3], and Raoult and Voisin [13]. We adopt the axiomatisation given in [10], in which a
(labelled) graph is viewed as a set of nodes, and thus graph rewriting is viewed modulo
the associativity and commutativity of set union, expressed again with empty syntax.

The labels that interest us for the semantics of transient connectors are pairs(P,s)
with P a COMMUNITY program ands a state configuration forP. Edges between
nodes labelled(P′,s′) are labelled with morphismsf : P→ P′ such that, for every
〈a : T | val : v〉 in s, 〈 f (a) : T | val : f (v)〉 is in s′ (modulo the equational axiomsE),
i.e., morphisms have to respect the state configurations. We shall call such graphs
anchored configurations.

The idea is to represent ann-ary transient connector defined byγi : Ci → G and
ρi : Ci →Ri as a conditional graph rewrite rule of the form

(P1,s1) · · · (Pn,sn)−→

C1
γ1−−−−→ (G,s)

γn
←−−−− Cnyρ1;Xι1 · · ·

yρn;Xιn

(XP1,s1) (XPn,sn)
if I ∧Xι1 ∈morph(R1,XP1)∧·· ·∧Xιn ∈morph(Rn,XPn)

where theXPi are “variables” that can be instantiated with any programs subject to
the conditions imposed by the rule, which are, for each instancePi, that it admits the
corresponding instance ofsi as a valid configuration, and that an instance ofXιi be
found that is a morphism from the connector’s roleRi to the instancePi (thus making
Pi a true instance of the role in the categorical sense as discussed in section 3). Notice
that each instancePi will be connected to the glue via the channelCi and the morphism
that results from the composition of the morphisms that connect the channel to the
role, as given by the connector, and the instance ofXιi that establishesPi as an instance
of Ri . The instances of the state configuration must, of course, satisfy the interaction
conditionI . Finally,s is the state given by the initialisation condition of the glueG.

For instance, in the case of the cart synchronisation, we would have for the connec-
tor defined in section 3 the rewrite rule corresponding to:

(XP1,〈X f : int | val : f 〉,XL)(XP2,〈Xn : int | val : n〉,XM)
−→

F
a7→a //

a7→move;Xι1
��

(G,nil) N
b7→{ab,b}oo

b7→move;Xι2
��

(XP1,〈X f : int | val : f 〉,XL) (XP2,〈Xn : int | val : n〉,XM)

if
0 ≤ 7− n < 28− f ≤ 3∨ 0 ≤ 28− n < 7− f ≤ 3∧Xι1 ∈ morph(Far,P1)∧Xι2 ∈
morph(Near,P2)
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The expression of the rule in rewriting logic, through the use of variables ranging
over nodes, programs, morphisms and lists of edges, makes clear that the left hand-
side of the rules can be instantiated by any nodes labelled by any programs matching
the given state configuration, and with any connectivity to other nodes, subject to the
applicability conditions. These include the interaction condition of the programs and
the identification of the morphisms that are being used to instantiate the roles. These
conditions on the instantiation morphisms are essential to narrow down the scope of
the applicability of the rule to programs that actually fit the roles.

Because the left-hand side of the rule is copied to the right hand side, the effect of
the application of the rule is to superpose the glue and its connections to the compo-
nents identified through the left-hand side. The fact that the identifiers of the super-
posed nodes and edges are new means that the interconnections are, indeed, new and
do not interfere with other interconnections that may exist.

Notice that the reverse rewrite rules, removing the application of the connectors,
are also necessary when the interaction condition becomes false.

Summarising, the architecture of the system consists of a rewrite theory presenta-
tion over the signature that we have outlined above in terms of anchored configurations.
The axioms of this rewrite theory presentation are the conditional rewrite rules defined
by the connectors. Given an initial anchored configuration of the system, such a rewrite
theory presentation provides us with the space of possible evolutions of the system con-
figuration from that state.

5 Concluding Remarks

Transient connectors state explicitly the condition that programs must obey in order to
interact according to the way prescribed by the connector. Externalising the interaction
condition makes the connectors simpler and allows their reuse under different circum-
stances. The architectural diagram also becomes simpler (and more intuitive) since it
reflects at each point in time just the connections that are in place.

In this paper we have given an operational semantics for transient connectors in
rewriting logic. For each connector there are two rules, one to introduce it into the
architecture, the other one to remove it. In both cases, the left and right hand sides of
the rules are anchored configurations showing the current state of each program, thus
allowing the evaluation of the interaction condition of the connector. Programs are
written in a UNITY-like language, which also has a semantics in rewriting logic. This
allows a uniform representation of both the computational and the architectural levels,
showing how they interact, and of their dynamics, showing how they jointly evolve.

There is also an added expressive power in the proposed semantics of architecture
that we intend to explore in future work: the ability of actions to be constrained by
conditions on the structure of the configuration. Further work that we intend to pursue
includes the definition of rewriting strategies for execution in Maude, and the use of
logical mechanisms available for reasoning about rewrite theories for reasoning about
the evolution of the systems that are subject to transient connectors.
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