

1

THE COMPONENT MODEL OF UPML IN A NUTSHELL

Dieter Fensel

1

, V. Richard Benjamins

2

, Stefan Decker

1

, Mauro Gaspari

7

, Rix Groenboom

3

, William Grosso

6

,

Mark Musen

6

, Enrico Motta

4

, Enric Plaza

5

, Guus Schreiber

2

, Rudi Studer

1

, and Bob Wielinga

2

1

 Institute AIFB, University of Karlsruhe, D-76128 Karlsruhe, Germany
{dfe, sde, rst}@aifb.uni-karlsruhe.de, http://www.aifb.uni-karlsruhe.de/~dfe

2

 University of Amsterdam, Department SWI, NL-1018 WB Amsterdam, NL
{richard, schreiber, wielinga}@swi.psy.uva.nl

3

University of Groningen, Department of Computer Science, P.O. Box 800,
NL-9700 AV Groningen, NL, rix@cs.rug.nl

4

 Knowledge Media Institute, The Open University, Walton Hall, Milton Keynes, UK
E.Motta@open.ac.uk

5

IIIA - Institut d'Investigació en Intelligència Artificial,
CSIC - Spanish Scientific Research Council, Campus UAB, 08193 Bellaterra, Catalonia

enric@iiia.csic.es

6

Knowledge Modeling Group at Stanford Medical Informatics,
Stanford University, 251 Campus Drive, MSOB X-215, Stanford, California, USA

{musen, grosso}@SMI.Stanford.Edu

7

 Department of Computer Science, University of Bologna, Italy
gaspari@cs.unibo.it

Abstract.

 Problem-solving methods provide reusable architectures and components for
implementing the reasoning part of knowledge-based systems. The Unified Problem-solving
Method description Language UPML has been developed to describe such architectures and
components to facilitate their semiautomatic reuse and adaptation. This paper sketches the
components and connectors provided by UPML.

1. Introduction

Problem-solving methods (PSMs) for knowledge-based systems (KBSs) (cf. Schreiber et al., 1994;
Benjamins & Fensel, 1998) decompose the reasoning task of a KBS in a number of subtasks and inference
actions that are connected by knowledge roles. Therefore PSMs are a special type of software architectures:
software architectures for describing the

reasoning

 part of KBSs. Several problem solving method libraries
are now available. The IBROW

3

 project (Benjamins et al., 1998) has been set up with the aim of enabling

2 THE COMPONENT MODEL OF UPML IN A NUTSHELL

semiautomatic reuse of PSMs. This reuse is provided by integrating libraries in a internet-based environment.
A broker is provided that selects and combines PSMs of different libraries. A software engineer interacts with
a broker that supports him in this configuration process. As a consequence, a description language for these
reasoning components (i.e., PSMs) must provide human-understandable high-level descriptions with
underpinned formal means to allow automated support by the broker. Therefore, we developed the

Unified
Problem-Solving Method description Language UPML

 (Fensel et al., 1998b). UPML is architectural
description language specialized for a specific type of systems providing

components

,

connectors

 and a
configuration of how the components should be connected using the connectors (called

architectural
constraints

). Finally

design guidelines

 provide ways to develop a system constructed from the components
and connectors that satisfies the constraints.

The content of the paper is organized as follows. In section 2, we will sketch the architectural framework
that is provided by UPML: ontologies, tasks, domain models, PSMs, bridges, and refiners. Section 3 briefly
mentions the architectural constraints, design guidelines and tool support. A case study where UPML is
applied to a library of PSMs for parametric design is described in (Motta et al., 1998). Aspects of the
underlying logic and its semantics as well as a more detailed discussion of UPML can be found in (Fensel et
al., 1998b).

2. Components and Connectors

The UPML architecture for describing a KBS consists of six different elements (see Figure 1): tasks, domain
models, PSMs, ontologies, bridges, and refiners. A

task

 that defines the problem that should be solved by the
KBS, a

PSM

 that defines the reasoning process of a KBS, and a

domain model

 that describes the domain
knowledge of the KBS. Each of these elements is described independently to enable the reuse of task
descriptions in different domains, the reuse of PSMs for different tasks and domain, and the reuse of domain
knowledge for different tasks and PSMs.

Ontologies

 provide the terminology used in tasks, PSMs and domain
definitions. Again this separation enables knowledge sharing and reuse. For example, different tasks or PSMs
can share parts of the same vocabulary and definitions. A fifth element of a specification of a KBS are

adapters

 which are necessary to adjust the other (reusable) parts to each other and to the specific application
problem. UPML provides two types of adapters:

bridges

and

refiners

. Bridges explicitly model the
relationships between two distinguished parts of an architecture, e.g. between domain and task or task and
PSM. Refiners

can be used to express the stepwise adaptation of elements of a specification, e.g. a task is
refined or a PSM is refined (Fensel, 1997). Very generic PSMs and tasks can be refined to more specific ones
by applying a sequence of refiners to them. Again, separating generic and specific parts of a reasoning process
maximizes reusability. In the following we discuss some of the elements of an UPML architecture and how
they are connected.

2.1. Ontology

An ontology provides an explicit specification of a conceptualization, which can be shared by multiple
reasoning components communicating during a problem solving process. In our framework ontologies are
used to define the terminology and its properties used to define tasks, PSMs, and domain models. UPML does
not commit to a specific language style for defining a signature and its corresponding axioms. However, we
provide two styles as possible ways for specifying signature and axioms. First we provide logic with sorts.
Second, we provide a frame-based representation using concepts and attributes.

THE COMPONENT MODEL OF UPML IN A NUTSHELL 3

2.2. Task

The description of a

task

 specifies goals that should be achieved in order to solve a given problem. A second
part of a task specification is the definition of assumption about domain knowledge and preconditions on the
input. These parts establish the definition of a problem that should be solved by the KBS. Contrary to most
approaches in software engineering this problem definition is kept domain independent, which enables the
reuse of generic problem definitions for different applications. A second particular feature is the distinction
between preconditions on input and assumptions about knowledge. In an abstract sense, both can be viewed
as input, however, distinguishing case data that are processes (i.e., input) from knowledge that is used to
define the goal reflect a particular feature of

KBS

s. Preconditions are conditions on dynamic inputs.
Assumptions are conditions on knowledge consulted by the reasoner but not manipulated. Often, assumptions
can be checked in advance during the system building process, preconditions cannot. They rather restrict the
valid inputs.

2.3. Domain Model

The description of the

domain model

 introduces domain knowledge as it is required by the PSM and the task

Figure 1. The UPML architecture for knowledge-based system.

Task

Domain Model

Task-Domain

Bridge

PSM

PSM-Domain

Bridge

PSM-Task

Bridge

Ontologies

PSM

Refiner

Task

Refiner

Ont.

Refiner

4 THE COMPONENT MODEL OF UPML IN A NUTSHELL

definition. Our framework for defining a

domain model

 provides three elements: a characterization of
properties of the domain knowledge, the domain knowledge, and (external) assumptions of the domain model.
Again, ontologies are an externalized means for defining the terminology.

The

properties

 of the domain knowledge are the counterpart of the requirements on domain knowledge
introduced by the other parts of a specification. The

domain knowledge

 is necessary to define the task in the
given application domain and necessary to carry out the inference steps of the chosen PSM.

Assumptions

relate the domain knowledge to the actual domain. These (external) assumptions capture the implicit and
explicit assumptions made while building a domain model of the real world. Technically they can be viewed
as the missing pieces in the proof that the domain knowledge fulfills its assumed properties. Some of these
properties may be directly inferred from the domain knowledge whereas others can only be derived by
introducing assumptions about the environment of the system and the actually provided input. For example,
typical external assumptions in model-based diagnosis are: the fault model is complete (no fault appears that
is not captured by the model), the behavioral description of faults is complete (all fault behaviors of the
components are modeled), the behavioral discrepancy that is provided as input is not the result of a
measurement fault, etc.

2.4. Task-Domain Bridge

We will now discuss a specific adapter type of UPML, the

task-domain bridge

. This connector type
instantiates tasks for specific domains and enable therefore their domain-independent and reusable
description. Mapping of different terminologies can either directly be achieved by renaming or indirectly by
linking their properties via mapping axioms. A connector may be forced to state assumptions about domain
knowledge to ensure that the mapped terminologies respect the definitions of a task specification. These
assumptions are the subset of assumptions of the task specification that are not part of the meta-level
description of the domain model, i.e., which are not fulfilled by the current model.

2.5. Problem-Solving Method

UPML distinguishes two different types of PSMs:

complex PSMs

 that decompose a task into subtasks and

primitive PSMs

 that make assumptions about domain knowledge to perform a reasoning step. They do not
have an internal structure, i.e. their internal structure is regarded as an implementational aspect not of any
interest for the architectural specification of the entire KBS.

UPML provides six elements for describing a

complex

 PSM: the already provided notion of (1)

pragmatics

, the (2)

costs

 of a PSM, the (3)

communication policy

1

 describes the communication style of the
method and its components, the (4)

ontology

 provides a signature used for describing the method, the (5)

competence

 description provides functional specification of the PSM and the (6)

operational

 specification
complements this with the description of the actual reasoning process of the method. The

competence

description of a method introduces two types of requirements that may be fulfilled to guarantee that the
method is able to achieve its postcondition as specified by its competence. First, preconditions restrict valid

1. It defines the ports of each building block and for each port how the block reacts on incoming events and how it
provides outcoming events.

THE COMPONENT MODEL OF UPML IN A NUTSHELL 5

inputs. Second, assumptions describe the required functionality of components that implement the subtasks of
the method. A complex method decomposes a task into subtasks and therefore recursively relies on other
methods that proceed its subtasks. Such a subtask may describe a complex reasoning task that may further be
decomposed by another PSM or may directly be preformed by a primitive PSM. An

operational description

defines the dynamic reasoning of a PSM. Such an operational description explains how the desired
competence can be achieved. It defines the data and control flow between the main reasoning steps so as to
achieve the functionality of the PSM.

The specification of a

primitive

 PSM closely resembles the definition of a complex one with two
significant differences: A primitive PSM does not provide an operational specification (this is regarded as
implementational aspect) and the definition of the competence slightly differs. The assumptions on
subcomponents are replaced by assumptions on domain knowledge. A complex PSM assumes subcomponents
to provide parts of its functionality and a primitive PSM directly accesses domain knowledge for this purpose.

2.6. Problem-Solving Method Refiner

(Fensel, 1997) provide a principled approach for the adaptation of PSMs that provide more refined and
therefore usable methods but prevent the combinatorial explosion of requiring too many components. This is
achieved by

externalizing

 the adaptation of methods. The generic method can still be used for cases in which
none of its refinements fit to task and domain-specific circumstances. Moreover, refinements themselves can
also be specified as reusable components and used to refine different methods.

3. Constraints, Guidelines and Tools

UPML is accompanied with a number of

constraints

 ensuring well-defined systems. For example, for a task
specification must hold:

ontology axioms

∪

preconditions

∪

assumptions

|



goal
ontology axioms

∪

preconditions

∪

assumptions

must

have a model.

That is, if the ontology axioms, preconditions, and assumptions are fulfilled by a domain and the provided
case data then the goal must be achievable. In addition, we require that a task specification is consistent.

Design guidelines

 define a process model for building complex KBSs out of elementary components. The
overall process is guided by tasks that provide generic descriptions of problem classes. After selecting,
combining and refining tasks they are connected with PSMs and their combination are instantiated for the
given domain. A more detailed discussion on this process model can be found in (Fensel et al., 1998b).

An editor for UPML was developed using PROTÉGÉ-II (Puerta et al., 1992). The output of the editor is
translated into Frame-logic (Kifer et al., 1995) allowing browsing and querying UPML specifications with
Ontobroker

2

. Still missing is a full-fledged theorem prover to reason about the formal specification parts of
UPML.

2. Ontobroker provides an ontology browser and a query interface to WWW documents (Fensel et al., 1998a) and
could nicely be reused for our purpose.

6 THE COMPONENT MODEL OF UPML IN A NUTSHELL

Acknowledgment.

 We thank John Gennari, John Park, Rainer Perkun, Annette ten Teije, and Andre
Valente for valuable comments on early drafts of the paper.

References

Benjamins, V. R. , Plaza, E., Motta, E., Fensel, D., Studer, R., Wielinga, B., Schreiber, G. Zdrahal, Z. and
Decker, S. (1998): An Intelligent Brokering Service for Knowledge-Component Reu,se on the World
Wide Web. In

Proceedings of the 11th Banff Knowledge Acquisition for Knowledge-Based System
Workshop (KAW´98)

, Banff, Canada, April 18-23.

Benjamins V. R. and Fensel, D. (1998): Special issue on problem-solving methods of the

International
Journal of Human-Computer Studies (IJHCS)

, to appear.

Fensel, D: (1997): The Tower-of-Adapter Method for Developing and Reusing Problem-Solving Methods. In
E. Plaza et al. (eds.),

Knowledge Acquisition, Modeling and Management

, Lecture Notes in Artificial
Intelligence (LNAI) 1319, Springer-Verlag.

Fensel, D., Decker, S., Erdmann, M., and Studer, R. (1998): Ontobroker: The Very High Idea. In

Proceedings
of the 11th International Flairs Conference (FLAIRS-98)

, Sanibal Island, Florida, USA, 131-135, May.

Fensel, D., Benjamins, V. R., Decker, S., Gaspari, M., Groenboom, R., Motta, E., Plaza, E., Schreiber, G.,
Studer, R., and Wielinga, B. (1998):

The Unified Problem-solving Method description Language
UPML

, Deliverable Esprit Project 27169, IBROW3, 1998. ftp://ftp.aifb.uni-karlsruhe.de/pub/mike/dfe/
spool/upml.{pdf,ps}.

Kifer, M., Lausen, G., and Wu, J. (1995): Logical Foundations of Object-Oriented and Frame-Based
Languages,

Journal of the ACM

, vol 42

.

Motta, E., Gaspari, M., and Fensel, D: (1998):

UPML Specification of a Parametric Design Library

,
Deliverable Esprit Project 27169, IBROW3.

Puerta, A. R. , Egar, J. W., Tu, S. W., and Musen, M. A. (1992): A Multiple-method Knowledge-Acquisition
Shell for the Automatic Generation of Knowledge-acquisition Tools,

Knowledge Acquisition

,
4(2):171—196.

Schreiber, G., Wielinga, B., Akkermans, J.M., Van De Velde, W., and de Hoog, R. (1994): CommonKADS.
A Comprehensive Methodology for KBS Development,

IEEE Expert

, 9(6):28—37.

