Scenario-Driven Analysis of Component-Based Softwar e Ar chitecture M odels
Prasanta Bose
{bose@isse.gmu.edu
Phone : 703-993-1651
Fax: 703-993-1638}

I nfor mation and Softwar e Engineering Depar tment
George Mason University
4400 University Drive
Fairfax, VA 22030

Abstract:

The architectural modd of a system provides a high level description of a system in terms of components
and connectors that coordinate the components to meet global requirements. Given a set of components
and a scenario-based representation of the required application specific interaction requirements between
the components, the application architecture design introduces connectors that provide the application
level glue to coordinate the given components. Though the connectors can be introduced to serve multiple
purposes, this paper focuses on the role of the connectors to provide causal connection between the
components and coordinate the component behaviors to satisfy the scenario specific ordering constraints.
For a given composition, the analysis problem is ensuring that i) the causal connection is consistent with
the component interfaces and the scenario requirements, and ii) the ordering constraints specified by the
scenario is satisfied by the composition under the causal mapping introduced by the connector. This paper
presents an automated method to address the above problems. The method takes as input 1) the required
interaction scenarios captured as sequence-diagrams that modd the event-flows between the components,
and 2) an application architectural mode of the system in terms of components and connectors whose
behaviors are modded by finite-sate machine models. The method first checks for consistency with respect
to the required causal connection and checks via symbolic simulation whether the required ordering
constraint is met. The method has been implemented in an extended UML-based design and analysis
environment to support component-based software architecture modeling and analysis.

Keywords: Scenarios, components, application Architecture, approximate modd checking, UML,

Scenario-Driven Analysis of Component-Based Software Architecture Models

1 Introduction

Recent developments in component-based standards and technologies (COM, DCOM, and CORBA) have
led to the increase in the development of component-based software systems [Tho98]. A major problem in
composing component-based system is providing assurance that a given composition of components does
in fact meet a given set of global integrity constraints (such as coordination constraints and structural
invariants) and quality constraints (for example, evolvability, rdiability, and security). Recent research on
architectural modds [MT97] of such systems have led to defining high levd modds needed to reason
about such properties.

The architectural modd of a system provides a high leve mode of the system in terms of components that
do the computation and connectors that causally connect the components [Luc95] and coordinate their
interactions to satisfy global constraints [Frod4, AG94]. The architecture research community has made
considerable progress on the development of architecture description languages (ADLS) [Luc95, Shads,
MK96, AG97, GMWQ97] that capture the structure of the system in terms of the components that interact
via connectors and capture key component and system level properties. The architectural modd of the
system provides a high level of abstraction to the different stakeholders of the system to reason about its
properties (functional and non-functional) and for making extension, customization, and evolution
decisions. Recent research has focused on specific ADLs to capture different properties in the architecture
[BG98] and their analysis.

In composing components to meet specific requirements, we can consider architectural models from at
least two perspectives - the application perspective and the solution perspective. In the application
perspective, the modd makes explicit the application specific usages, component interfaces and
application specific global properties and constraints. The solution perspective captures the mechanisms
that realize the application level components and connectors typically expressed in some style (e.g. pipe-
& -filter, explicit invocation, implicit-invocation, ec.).

In this paper we focus on the application specific perspective where the components and their ports
(interfaces) are abstracted with respect to a given set of application specific concerns. In composing a set
of components for a specific set of needs, we view the application level architecture modd as defining
connectors (synonymously called coordinator in this paper) that causally link (and hence compose) the
component interfaces and coordinate their interactions to meet the global integrity constraints. The
problem is assuring that the connector does provide the necessary causal connectivity and that the
composition satisfies a given set of global application constraints.

This paper presents a scenario-driven approach to addressing the above problem. Scenarios provide a
natural way to express required behavioral invariants in an example-oriented manner. They can be used to
express non-functional constraints [KABC96]. The scenarios that we consider are scenarios of
interactions between the components being composed. The scenario is represented as a sequence diagram
capturing the interaction reationships between components in terms of event-flows and the relative
ordering of such flows. Figure 1. shows a simplified example of a scenario of interaction, expressed as a
sequence diagram, between a buyer and a sdller component that specifies the usage of the composition to

support goods ordering and payment. The sequence diagram specifies the flow of events' between the
components. Given such a requirement the application level compositional architecture design defines
coordinators that compose the component interfaces to meet the interaction requirements.

buyer : Buyer seller : Seller buyer : Buyer seller : Seller

1: OrderRequest N 2: DeliverProduct

2: AckOrder 3: AckRec

H 4: Invoice

|
ﬂH

Figure 1: A sequence diagram based representation of the required interaction between the
buyer and the seller component.

(a) (b)

1.1 Problem and Key ldeas

The sequence diagram specifies two major behavioral constraints that the coordinator-based composition
of the components must meet: a) Causal connection constraint. Messages or events originatng from the
source component must be causally connected to events at the destination component. For example in
Figure 1(a) the OrderRequest event from the Buyer must be mapped to some event on the sdler
component interface, here the RecieveRequest event. Here we make the assumption that the coordinator
does not introduce new events. The causal constraint is met if the coordinator defines a mapping of the
event from the source to an event that belongs to the destination interface. b) Ordering Constraint. Under
the mapping induced by the coordinator, the sequential ordering of events reative to each component must
be ensured under composition.
The paper presents an approximate approach to analyzing the constructed models against specified
scenarios. The key stepsin analyzing for the above constraints are:

Trandation of a specific global behavioral interaction scenario as a set of localized event traces

relative to each component. From Figure 1(a), the subtrace related to buyer is given by the sequence

([<To=Sdler, Event =OrderRequest> ; <From = Sdler, Event =AckOrder>]°. Note that multiple

! The interaction between the components in a sequence diagram are solely interpreted as event-flows.
The directionality of the flow from the source to the destination captures the event produced by the
source. The vertical timeline captures the ordering of the flows.

2 The notation ai;a, is used to denote that a, follows a;.

components may be engaged in an interaction. The set of event traces local to each component then
defines the history of interactions with the rest of the system via the coordinator interface.

Coordinator as an event mapper. To satisfy the causal connection constraint the coordinator must
map producer component events to consumer component events. The individual traces for a
component are checked for existence of such mappings. It is to be noted that for a static connector, the
event is mapped uniquely to a destination component event across all scenarios. For a dynamic
connector (as specified here using FSM models), the source event may get mapped to different events
depending on the state of the connector.

Testing for each trace by symbolic execution of the model. The ordering constraint is satisfied if the
ordering specified by the localized traces can be satisfied. The method checks the consistency of each
local trace by symbolic simulation of the composition in an incremental manner.

The following sections describe the representations used and briefly describe the method based on the
aboveidess.

2 Representations

2.1 Architectural Modelingin UML

We modd architectures of component-based systems using the extensionibility feature of the Object-
oriented Modding Standard UML [UML97]. We exploit the stereotype concept in UML to define the
architectural description language (ADL) specific constructs. Figure 2 shows the architecture meta-mode
elements and relationships represented using UML stereotypes. The architecture meta-model builds on the
architectural modeling constructs developed in the ACME architecture interchange language [GMW97].
We introduce extensions to the ACME dements that are necessary to modd component and connector
behavior.

As shown in the meta-modd, the behavior object is modeled as a first-class object that is attached to a
component or connector via an association relation. The behavior can be modeled as a finite state machine
or as a process (CSP [Hoa85]) or as constraints over events (using propositional temporal logic). In this
paper we consider only finite state machine models of the component and connection behavior. The ports
of component and roles of components have a protocol signature’® specified by the infout stereotyped
events suffered/generated by the port or role. The semantic relationship between a components port
protocol and the component’s behavior is that the behavior of the component defines the computation
(similar in spirit to that of WRIGHT [AG97]) by specifying how input events are mapped to other events
or actions (observable or internal). The component behavior may also be used specify coordination of port
behaviors locally. Similar semantic relationship holds between a connector's behavior specification and the
role specifications — here the connector behavior specifies the coordination of the roles. The magjor
difference is that the connector does not generate any application specific events (i.e. all events are
determined by the external context consisting of the components being coordinated).

® ADL's like Wright [AG97] consider CSP based specifications of port and role behaviors as well as the
component and connector behaviors.

<<equality>>

<<trace>>

<<property>> <<systeam>> <<constraint>>

=
T

<<inequality >>

<<connection>>

\

<<property>> <<component>> <<constraint>>

<<constraint>>

<<role>>
<<pihding>> <<behavior>>

<<IN>> event-name(args)
<<port>> <<OUT>> event-name(args)

<<constraint>>

<<process>>

<<IN>> event-name(args)
<<QOUT>> event-name(ags)

<<fsm>>

Figure 2: Architecture meta-mode defined using stereotypes in the Unified Modding Language (UML).
The modeling constructs are based on extensions to constructsin ACME [GMW97].

2.2 Composition Usage Specification: Component I nter action Diagrams

Components get composed to serve specific global functions that require their behavioral interactions. The
global functions of a component-based system can be behaviorally specified using a set of scenarios that
define the desired behavioral interaction relationships between the components. In UML such scenarios
are best captured using object-interaction diagrams called sequence diagrams. The sequence-diagram
specifies the objects (here component instances) that are involved in the interaction, event-flows between
the components and a temporal ordering on the flows. Figure 1 shows an example of the sequence
diagram for the buyer and sdller component composition example. It is to be noted that multiple sequence
diagrams may be required to completdy specify a function. The event-flow link from the source to the
destination is labeled with the event from the source.

2.3 Coordinator based Application Architecture

Coordinators have typically been used to coordinate solution level components. In a similar spirit we
consider the application architecture as consisting of components and coordinators that are modeed
strictly from an application perspective [NACO97]. The coordinators specify the application specific glue
that composes the component behaviors to achieve global integrity constraints. The components and

coordinators have ports and roles respectively and the architecture specifies the binding between the ports
and the roles. It is worth noting that in mapping the application architecture to solution architecture, the
coordinators can be realized by the connectors at the solution leve or they can also become first-class

<<p0|’t>>
Order&Rec Goods <<port>>
<<component>> PayforGoods
<<OUT>> OrderRequest() > Buyer S
<<OUT>> AskifAvailable() (from Buyer) <<IN>> pay()
<<IN>> Reply() <<OUT>> authPay()
<<IN>> ReceiveGood() <<IN>> Reply()
<<OUT>> AckRecG()
<<binding>>
<<binding>>
<<role>> <<role>>
Order&Deliver pay
<<IN>> OrderRequest() | <<OUT>> pay()
<<OUT>> Reply() RPN <<connector>> K| <<IN>> authPay()
<<OUT>> ReceiveRequest() | buy&sell <<IN>> invoice()
<<IN>> AckOrder() <<OUT>> chargecust()
<<IN>> AckRec()
<<IN>> DeliverGood()
<<OUT>> ReceiveGood()
<<OUT>> ProdAuvail() <<binding>>
<<bin+ng>>
<<p0|’t>> <<port>>
ProcessOrder&Deliver n o'cz&Char e
voi
<<component>> 2
<<IN>> i — Seller
IN>> ReceiveRequest() <> U luetes
<<OUT>> ProductAvail() (from Seller) <<IN>> chargecust()
<<OUT>> AckOrder() e OUT A .
<<OUT>> DeliverGood() ckPayment(

Figure 3: The Application architecture for buyer and sdller component composition example.

components at the solution level. Figure 3 shows the composition of the buyer component and the sdller
component based on the buy& sell connector.

The components and connectors are specified using finite-state machine models. Figure 4 shows the state-

chart diagram representation of the buy&sdl connector behavior. The transitions between the states
specify the causal connection between a given input event from a source role to an output event in a
destination role. For simplicity, the machine modd in the figure only shows distinctions between buyer (b)
or sdler (s) role.

o —

Querying
.

failure AckRecG.b

invoiced
failure

ChargeCust.s

Figure 4: A Finite-State machine model, using state-charts, of the buy-&-sell coordinator
behavior

Given the usage specification of the composite system as interaction scenarios that involve the
coordinator, the problem of analysis of the design is to check if the coordinator-based design respects the
behavior interaction relationships required by the scenarios by satisfying the causal connectivity constraint
and the ordering constraint.

3 Scenario Driven Coordination M odel Checking: The M ethod

The method for checking the composed model translates the interaction scenario specification into local
traces, checks for consistent mapping, and then does symbolic simulation of the coordinator based
composed modd to determine if sub-sequences of the required behavioral interaction are accepted by the
modd. The method is based on the simple premise that consistency of the translated local specifications
with respect to the coordinator-based refinement ensures satisfaction of the global interaction requirement.
An informal argument for such a premise is as follows: a) the sequence diagram behavior specification
holds iff the local behavior specifications hold. b) for the composed modd to be consistent with the
required behavior, the model should entail the behavior and hence in turn entail the individual local
specifications. Hence the method systematically checks for satisfaction of the causal connection constraint
and the ordering constraint relative to each local trace specification. We briefly describe the three basic
substeps of the checking process.
Tranglation of global to local. This step involves taking the sequence diagram specification and
generating the local traces based on the timdine for each component. Each dement in the generated
local sequence is represented by the tuple [<From/To> <Event>]. For example, the local trace for the
seler component obtained from the specification in Figure 1(a) is ([<From=Buyer, Event
=OrderRequest>; < To = Buyer, Event =AckOrder>]. An observation to be made here is
that, when only two components are involved in an interaction, the local-traces are symmetric
and hence checking for one local trace entails satisfaction of the other.

Checking for causal connection. The causal connection checking involves checking for existence of
coordinator mappings that connects a source component event with a destination component event in a

Local-Trace(cl,tl):

[<To=c2, event = ex>
<From =c3, event= gy>] %/
& connector(Cn):
. Mapping(M):
component(cl) ! ex -> 2ex’
ey->7ey’

%,

component(c3)

Figure 5: The causal connection problem with respect to local tracet; for component c;.

local specification. Figure 5 shows the causal connection problem schematically for a given local trace
for component ¢;. Simple checking of consistency of the port and role protocol signatures for the given
architectural binding is not sufficient since such checking does not provide the mapping information
necessary to do the consistency checking. The checking involves obtaining the mappings for the given
source events from the finite-state machine specifications of the coordinator, here g, and g, to ?e, and
?e, respectively, and determining consistency of e and g with respect to the component port
specifications. The mapping is derived from the understanding that the transitions in a coordinator
specify the causal link between the input event in a role (hence the output event of a port bound to the
role) and the output event in a role (and hence the input event of the port bound to the role). For
example, the connector specification in Figure 4 causally maps the OrderRequest event from the buyer
to the RecieveRequest event of the sdler (skipping the ports and roles for brevity). For a dynamic
connector specified by an FSM, each mapping specifies the parent state, the transition from which
generates the output event.

Ordering constraint checking. The previous step, if successful, yields one or more possible mapping
relevant to the local specification. The ordering constraint checking involves determining existence of
a path of events that starts with the starting event in a trace and leads to the subsequent events in the
localized specification, where intermediate events maybe generated by other components via the
coordinator. Since for a given input event to the coordinator, the output event is dependent on the
coordinator state and multiple state transitions may exist for that event, for completeness the method
must explore all such paths. We take an incremental approach. The method does approximate
checking for a given trace in the sense it checks of existence of a path that either succeeds or fails via
divergence. We consider the modd as failing under divergence when the model accepts an event to or
from the component that is not consistent with the trace specification. For example, if the simulation
trace for the buyer yidds OrderRequest followed by Invoice event from sdler, then the modd is
divergent relative to the ordering trace of OrderRequest followed by AckOrder event from sdler. The
basic steps of the method are shown in Table 1.

Table 1: The Event Ordering Checking Method.

Method(Tr,C, R, M)
Tr = trace = sequence of input/output events{e;; e, ; ..}
C = component relativeto which Tr is being checked
R = rest of architectural mode consisting of other components and coordinators;
M = set of Mappings applicableto eventsin Tr
Let,
S =Simulation State = nil /* current active states indexed by component and connectors */
Steps:
1. Do until empty(Tr)
Begin:
1.1 Xe= get-next-event (Tr) /* Theget isdestructive*/
12 Case
[a] XeFROM = Component(C)andC T R
Begin:
Get-input-to-comp(Xe C, ?X€, M, S)
/* Using the applicable mappings M, map the Xeto ?X€ consistent with S; update state S for connector */
Run_FSM(C, S) to find next events (Eo) for input(?X€)
/* Symbolically executethe FSM for C consistent with S and Update S for C*/
Let Xe, = read-next-event(Tr) /* non-destructiveread */
If Xe,TO=component(Cy) & CyT R
And fail-to-match-any (Xe,, E0)
Then FAIL(Xe);
Else CONTINUE.
End.
[b] Xe.TO = component(C) & CT R
Begin:

/* The The repeat loop searches event traces(P) starting with event Xefrom C until it findsa
path(P) such that the path hasan event Xy where Xy originates from someCi and
there exists an applicable Mapping for Xy to C */

Repeat [Obtain-next-sim-path(Xe, S, M, P) |
Until [event(Xy) in P & Applicable-Mapping-To(Xy, C)]
Let Xe, = read-next-event(Tr);
If matches(Xg, Xy)
Then Continue;

Else FAIL(Xe).

End;

End-Do;

The does incremental checking by simulating for one event at a step and checking for consistency of the
generated events with respect to next event in the sequence. The cost of checking for all event-traces may
be very high for complex compositions and large number of scenario specifications. One option that can
be explored to reduce the cost is by define using the traces to generate a lattice under trace sub-sumption
relation and start checking systematically with smallest sequence. Any failure with a specific subsequence
can be used to infer failure of super-traces.

3.1 Object-Oriented Architecture M odeling and Analysis: Support Environment

We have done an initial prototype of scenario-driven analysis component as part of a suite of tools for
collaborative component-based software architecture modeling and analysis environment [Bo98]. The
environment is built via extending Rational Rose tool [R098] with tools to support for a) Capture of
component-based software architecture models following the meta-modd defined in Figure 2. b) Capture
of dependencies between architectural decisions and architectural requirements via the WinWin meta-
mode [Bo98, BBHL95]. c) What-if scenario driven analysis for change-analysis using mode of the

dependencies captured by the WinWin artifacts. d) Behavior interaction scenario driven analysis of
composition based on the method presented in this paper. The current application of the environment and
toals involves modeling and analysis of component-based simulations [JB98] in the JSIM S domain.

4 Related Work

The work presented in this paper is related to the current work on integrating architectural modeling
languages with Standard design method and architecture analysis. Our work on use of UML to define the
meta-model for capturing architectural modelsis similar in spirit to that of Robbins et. al [RMRR98]. The
work presented here exploits the stereotype extensibility feature to capture the ACME modding
constructs. Research on analysis of architectural modes has been conducted based on the underlying
semantic mode in the ADLs. The work on WRIGHT [AG97] is based on CSP [Hoa85] models of
components and connectors and uses FDR [For92] model-checking tool for deadlock analysis. The work
on Rapide [Luc95] is based on partially ordered event model (POSET). Rapide is an executable ADL and
hence analysis for event-orderings is based on the POSET graphs resulting from the simulation of the
architecture model. There has also been recent progress on compositional approaches to analysis of
architectures [CK96] for safety and liveness properties. Other formal methods based approaches to mode
checking of software systems [WF95, IM96] do not consider mode of the system at the architecture leve
in terms of components and connectors. The work presented in this paper builds on the symbolic mode
checking concepts developed in SMV [McM93] and used in [WF95] to apply to analyzing component
compositions for required scenarios of interactions formalized as sequence diagrams.

5 Summary and Future Work

This paper presents a systematic method for scenario-driven analysis of component-based software
architectural models. We consider the architectural modd from the application perspective. More
specifically the paper considers coordinator based composition of independent components with the
objective to satisfy the interaction requirements specified by given scenarios expressed as seguence
diagrams. For a given composition, the paper defines the analysis problem as ensuring that i) the causal
connection is consistent with the component interfaces and the scenario requirements, and ii) the ordering
constraints specified by the scenario is satisfied by the composition under the causal mapping introduced
by the connector. This paper presents an automated method to address the above problems. The method
takes as input 1) the required interaction scenarios captured as sequence-diagrams that modd the event-
flows between the components, and 2) an application architectural mode of the system in terms of
components and connectors whose behaviors are modeled by finite-sate machine modes. The method first
checks for consistency with respect to the required causal connection and checks via symbolic simulation
whether the required ordering constraint is met. The method has been implemented in an extended UML-
based design and analysis environment to support component-based software architecture modeling and
analysis. Current and future work is aimed at @) improving the efficiency of the approach by considering
the lattice of traces, b) applying the tool to consider solution architectures as wdl, c) improving the tool
via experimenting in the JSIMS domain, and d) Usage of the tool to automatically detect issues based on
Winconditions that identify the desired scenarios.

6 Acknowledgements.

The author thanks Xiaoging Zhou and Ping Chen for ther contribution to the development of the
prototype implementation in the Rationale Rose environment. The author also thanks Jesse Aaronson for
the modding work in the JSIM S domain where the method is currently being applied and debugged.

7 References

[AAGO3] G. Abowd, R. Allen, D. Garlan. “Using Style to Understand Descriptions of Software
Architecture’, Proceedings of the First ACM SIGSOFT Symposium on the Foundations of Software
Engineering, Software Engineering Notes, ACM Press, December 1993.

[AGY4] R. Allen and D. Garlan, "Formal Connectors’, CMU-CS-94-115, Carnegie Mdlon University,
March 1994.

[AG97] R. Allenand D. Garlan, "A Formal Basis for architectural Connection”, ACM Transactions on
Software Engineering and M ethodology, 1997.

[BBHL95] Boehm, P. Bose, Ellis Horowitz and Ming June Lee * Software Requirements Negotiation and
Renegotiation Aids: A Theory-W Based Spiral Approach”, IEEE Proceedings of the 17th ICSE
Conference, 1995.

[Boe98] P. Bose, " Change Analysis in an Architectural Modd: A Design Rationale Based Approach”,
Submitted to ISAW3, 1998.

[BG98] B. Spitznagd and D. Garlan, "Architecture-Based Performance Analysis', 10" Internatnational
Conference on Software Engineering and Knowledge Engineering (SEKE98), submitted.

[CK96] S. C. Cheung and J. Kramer, "Checking subsystem Safety properties in Compositional
Reachability Analysis', ICSE 18, Germany, 1996.

[Fr94] Svend Frflund, "Coordinating Distributed Objects: An Actor-Based Approach to
Synchronization”, MIT Press, 1996.

[Gar98] D. Garlan, “ Higher Order Connectors’, Workshop on Compositional Software Architectures,
Monterey California, 1998.

[GAO95] D. Garlan, R. Allen, and J. Ockerbloom, “ Architecture Mismatch: Why Reuse is so hard”,
|EEE Software, pp 17-26, November 1995.

[GMW97] D. Garlan, R. Monroe, and D. Wile, "ACME: An Architectural Description Interchange
Language’, Proceedings of CASCON 97, November 1997.

[GS96] D. Garlan and M. Shaw. “ Software Architectures: Perspectives on an Emerging Discipline’,
Addison Wesley Publishers, 1996.

[Hoa85] C. A. R. Hoare, "Communicating Sequential Process’, Prentice Hall 1985.

[JB98] J. Aaronson and P. Bose, " Modd Based Simulation Composition”, submitted to Automated
Software Engineering Conference, Hawaii, 1998.

[HM96] Constance Heitmeyer and D. Mandriali, "Formal Methods for Real-Time Computing”, John
Wiley, 1996.

[KABC96] R. Kazman, G. Abowd, L. Bass and P. Clements, "Scenario-based Analysis of Software
Architectures®, IEEE Software, November 1996, pp 47-55.

[Luc9s] D. C. Luckham, J. J. Kenney, L. M. Augustin, J. Vera, and D. Bryan, “ Specification and
Analysis of System Architecture Using Rapide’, |IEEE Trans. Software Engineering, vol. 21, no. 4, pp.
336-355, April 1995.

[McM93] K. L. McMillan, "Symbolic Modd Checking", Kluwer Academic Publishers, 1993.

[MK96] J. Magee and J. Kramer, "Dynamic Structure in Software Architectures”, In proceedings of the
Fourth ACM SIGSOFT Symposium on the Foundations of Software Engineering.

[MQ94] M. Moriconi and X. Qian. “Correctness and Composition of Software Architectures’,
Proceedings of the Second ACM SIGSOFT Symposium on Foundations of Software Engineering,
Software Engineering Notes, ACM Press, December 1994

10

[MT97] N. Medvidovic and R. Taylor, "A Framework for Classifying and Comparing Architecture
Description Languages, ESEC/FSE 97.

[NACO97] G. Naumovich, G. S. Avrunin, L. A. Clarke, and L. J. Osterwelil, "Applying Static Analysis to
Software Architectures’, ESEC/FSE97.

[PW92] D. Perry and A. Wolf, “ Foundations for the Study of Software Architecture’, ACM SIGSOFT
Software Engineering Notes, Vol. 17, 4, October 1992.

[RMRR98] J. Raobbins, N. Medvidovic, D. Redmiles, and D. Rosenbloom, "Integrating Architecture
Description Languages with a Standard Design Method”, Second EDCS Cross Cluster Mesting, Austin,
Texas, 1998.

[Ros98] A. W. Roscoe, "The Theory and Practice of Concurrency”, Prentice Hall, 1998.

[R098] Rational Rose 98, Tool and Documentation, Rational Software Corporation.

[Sha95] M. Shaw, R. Deling, D. Klein, T. Ross, D. Young, and G. Zdesnik, “ Abstractions for Software
Architecture and Tools to Support Them”, IEEE Transactions on Software Engineering, April, 1995, 314-
335.

[Tho98] C. Thompson, editor, "Workshop on Compositional Software Architectures’, Monterey
California, January 6-8, 1998.

[UML97] UML Semantics, version 1.1, Documentation, Rational Rose Corporation.

[WF95] J. Wing and M Vaziri-Farahani, "Modd Checking Software Systems: A Case Study", Software
Engineering Notes, 20(4):128-139, Oct 1995. Proceedings of the 3 ACM SIGSOFT Symposium on the
Foundations of Software Engineering.

11

