
Understanding Software
Architecture: A Semantic and
Cognitive Approach

StuartAndersonandCorin Gurr
Divisionof Informatics,University of Edinburgh
JamesClerkMaxwellBuilding
TheKingsBuildings
Edinburgh EH93JZ

Fax: +44 1316677209
Email: soa@dcs.ed.ac.uk,corin@cogsci.ed.ac.uk

Abstract
We emphasisethe role of SoftwareArchitectureasa mediumfor communicating
aspectsof a softwaresystemto the diversespecialistandnon-specialistgroupsin-
volvedin thecreation,implementationanddeploymentof thesystem.Thisapproach
forcesus to take carefulaccountof issuessuchas the domainof application,the
taskthearchitectureis supporting,andthe representationusedfor thearchitecture.
We presentsomepreliminaryresultsof thisapproachdrawing onbothsemanticand
cognitive analysesof Software Architectureand outline someempirical work on
SoftwareArchitecturein practicebasedontheapproachpresentedhere.

Keywords
semanticsof SoftwareArchitecture,representingSoftwareArchitecture,cognitive
aspectsof SoftwareArchitecture,domainspecificity, reasoningaboutSoftwareAr-
chitecture

1 INTRODUCTION

Much of thework on SoftwareArchitecturehastakensoftwaredesignasthemain
activity software architectureis intendedto support.Here we take the view that,
althoughsupportfor designis important,the role of softwarearchitectureis much
broaderandthatthisbroaderrole requiresadifferentemphasisin its study.

Our interestin softwarearchitecturebeganin thestudyof safety-criticalsoftware.
The main standardfor safety-criticalprocess-controlsoftware is IEC 61508(IEC
1995).Thisstatesthat:

c
�

IFIP 1996.Publishedby Chapman& Hall



2 UnderstandingSoftware Architecture: A SemanticandCognitiveApproach

Froma safetyviewpoint,theSoftware Architecture is where thebasicsafetystrategy is
developedfor thesoftware.

Thusthesoftwarearchitectureof a softwaresystemis thedescriptionof thesystem
thatwouldbeusedby theteamresponsiblefor thesafetyof thesystemastheprimary
representationof thesystemstructure.Thatteamwould includesoftware,hardware,
domain,andsafetyexperts.

This view of architectureasa lingua franca for the high-level analysisis com-
monin many areasof engineering.For example,thenotionsconnectorandcompon-
entoriginatein Fault-treeanalysis(Vesley 1981).Similarly, HazardandOperability
Analysis (HAZOP) (Kletz 1986) takes the piping and instrumentationdiagramof
a plant asthe architecturaldescriptionthat representsthe sharedview of the plant
usedby themulti-disciplinaryteamcarryingout HAZOP analysisto determinethe
absenceof serioushazards.

Thischangefrom a view centredon thedesignteamto onewheresoftwarearchi-
tectureis therepresentationof sharedknowledgebetweena diverseteamof experts
suggeststhe a new working definition of softwarearchitecturethat we usein this
paper:

Software Architecture is a suitablerepresentationof someaspectsof a software system
usedby a potentiallydiversegroupof technical specialiststo reach reliableagreementon
a sharedtask.

Thisnew definitionsuggestssomeareasof studyfor softwarearchitecture:

Aspects of systems: this involves looking at the domainof the system,different
kindsof structurein systemsandat goodrepresentationsfor differentaspectsof
systems.

Representations: looking at the softwarearchitectureasa communicationdevice
brings representationinto focus.We needto studyerrorsof interpretation,the
immediacy of representations,how well they supportparticulartasks,how well
they representparticularaspectsof systems.

Agreement: weareconcernedthatthearchitecturalrepresentationcontainsenough
informationthatit is possibleto reachagreementanddemonstratethatagreement
is justified.

Task: differenttasksmayrequirequitedifferentrepresentationsof differentaspects
of the system.It may be that systemshave many differentrepresentations.The
consistency requirementsbetweensuchrepresentationsarequite weakbecause
weonly needconsistency of informationassociatewith theintendedtask.

Ourcharacterisationof softwarearchitectureasacommunicationdevicesuggests
thatweneedto studyit in at leastthreeways:thelogicalanalysisof softwarearchi-
tecture,cognitiveaspectsto takeaccountof humaninterpretersandsocialaspectsto
takeaccountof thewaytheindividualsembedin thesurroundingorganisations.This



SEMANTICVIEW 3

paperis our first attemptat synthesisingwork reportedin a seriesof papersof the
UnderstandingSoftware Architecture project� . The paperpresentsthreestrandsof
research:formal (semantic)modelsof languagesexpressingarchitecturalelements
of specificdomains;cognitive-basedtheoriesof representations;empiricalstudiesof
softwarearchitecturesasusedin industrialapplications.The resultsreportedhere
form the foundationsfor eachof thesethreestrandsof research.Work currentlyin
progressis takinga moredirectapproachto combiningandsynthesisingthesethree
strandsinto a coherent,holistic approachto theunderstandingof softwarearchitec-
tures.

Currently, thesethreestrandsintersectin the study of the designof industrial
embeddedcontrollers.This commonlyoccurringclassof systemsspansmany dif-
ferentdomains(e.g.automotive, processcontrol, ASIC design,mobile telephony)
and is a very commoncomponentof critical systems.The approachto designis
quitestable,emphasisinga cleardistinctionbetweendataandcontrolflow, but suf-
fers from very fragmenteduse of notationsand from languagestied to specific
manufacturers(as with, for example,ProgrammableLogic Controller (PLC) lan-
guages(IEC 1993)).Datarelatingto controllersis particularlyinterestingbecause:
(i) a disciplineddesign/review processgives a detailedview of the evolution of
designs;(ii) it is commonto developfamiliesof controllersfor slightly differentcir-
cumstances.In suchcircumstancesthepragmaticbenefitsof architecturalreuseare
evidentto designers;(iii) embeddedcontrollersinvolvediversetechnicalspecialities
in their construction(thusgiving aninsight into our view of theuseof architecture
asa lingua francafor thedesignteam);(iv) oneaspectof our investigationis in the
choiceof representationsfor designs(see(Gurr 1997)for a discussionof this).Em-
beddedcontrollersinvolvediverseformsof diagrammaticandtextual representation
to capturecontrolflow, dataflow andtiming aspectsof systems.

2 SEMANTIC VIEW

We have taken the PLC programminglanguageIEC 1131-3(IEC 1993)asa start-
ing point for our investigationinto thesemanticsof SoftwareArchitecture.Although
IEC1131-3is primarily intendedto supportprogrammingit doeshavemany features
in commonwith SoftwareArchitecturenotations.We considerit to bea “naturally
occurring”exampleof alanguageintendedto encourageanarchitecturalapproachto
systemdesign.For us,its importantfeaturesinclude:addressinga particularapplic-
ationdomain,theextensiveuseof diagrammaticnotationsanda stratifiedapproach
to designat threedifferentlevels (thesecorrespondroughly to views in (Perryand
Wolf 1992).)Theselevels are: function blocks(FB), correspondingto a dataflow
view; sequentialfunctioncharts(SFC),correspondingto acontrolview; andconfig-
urations,thatcorrespondto aresourceuseview.

�
We acknowledgethe supportof the UK Engineeringand PhysicalResearchCouncil, grant number:

GR/L37953.



4 UnderstandingSoftware Architecture: A SemanticandCognitiveApproach

Sofar we have two main resultsthatwe believe areusefulin thecontext of IEC
1131-3andpoint to a classof resultsthatareimportantfor SoftwareArchitecture:

Faithfulness of notation: In (AndersonandTourlas1997)weexplorethedataflow
representationin IEC 1131-3andcharacterisetherequirementplacedon these-
manticsof the programmingsystemby the useof the diagrammaticnotation.
The characterisationconsistsof a setof equationsthat mustbe satisfiedby the
semantics.This capturesthe constraintsplacedon the semanticsby the useof
diagrams.We canseethis asa minimumlevel of agreementexpectedof usersof
thenotation.

Diagrammatic support for proof tasks: In (Andersonand Tourlas1998) we ex-
plorethecontrolrepresentationof IEC 1131-3.Theaimof thiswork is to support
diagrammaticallydrivenproofsof a simpleclassof propertiesthataredesigned
to be relevant to the classof applicationsdesignedin the system.Herewe are
aimingatcombiningdomaindependency with thelimited natureof therepresent-
ation to assistwith a particulartaskwhich is difficult in generalbut is consider-
ably simplifiedby restrictingtheclassof propertiesandchoosinganappropriate
representation.

Thesetwo resultstake therepresentationasa critical elementin supportingtheana-
lysis of systemdesigns.Oneresult looks down by capturingthe requirementsthe
representationof the systemplaceson thesemanticsof the systemwhile theother
looks upwardstowardsthe supportof complex tasksbasedon the representation.
Bothof theseresultsareinterestinginstancesof moregeneralcognitivework on the
useof graphicalrepresentations.

3 COGNITIVE VIEW

Thesemanticview of SoftwareArchitectureprovidessomecontroloverthesafetyof
representationsandthecorrectnessof taskssupportedby aparticularrepresentation.
To assesshow well a particularrepresentationmeetstheneedsof it’s userswe need
finer toolsthatconsiderfeaturesof representations(e.g.complexity, clarity, . . . ) that
arenotconsideredin thesemanticview.

Froma cognitive point of view to matcha representationto a task(anddomain),
wemustconsiderthefollowing threeissues:

Matching: Whatpropertiesdo diagrammaticrepresentationspossess,so that they
might be matchedto propertiesin the task and domainat hand?Someof our
work (Gurr1998)developsageneralframework basedontheextentto which the
representationis isomorphicto therepresentedsituation.In our previousstudies
we have lookedat representingsimplesyllogismsandhave observed that close
matchingof representationsaidsunderstanding.In thecaseof SoftwareArchitec-
turewemighthopeto observethatcertainstructuralrelationsarepreservedin the



EMPIRICALSTUDIES 5

diagrammaticrepresentations.Wehaveachievedthis in therepresentationusedin
ourrepresentationof arestrictedclassof IEC 1131-3SequentialFunctionCharts.
Furtherwork is neededto seetheextentto which this is helpful.

Complexity: Whateffect doesrepresentationhave on thecomplexity/salienceof a
task?In earlierwork (StenningandOberlander1995)we have observedthat the
limited expressivenessof diagrammaticrepresentationsseemsto help aid some
reasoningtasks.Thechoiceof anappropriatelymatchingrepresentationwith ex-
pressivenesscloselymatchedto thereasoningtaskseemsto provide appropriate
supportfor humansundertakingthe task.This work helpedmotivatethedesign
of oursimpleproofsystemfor SequentialFunctionCharts.Theresulthasbeena
systemfor proving safetypropertiesof systemswherethe independenceof con-
currentcomponentsis directly expressedin the graphicalnotation.We believe
this greatlysimplifiesthetaskof reasoningaboutthesystemandit restrictscon-
currency in SFCsystemsto acasethatis easilyunderstoodby non-programmers.

Human variability: thehumanelement:whatmoreis thereto consider, beyondan
analysisof thelogicalpropertiesof diagrammaticrepresentations?In recentwork
(StenningandYule1997,Stenning,CoxandOberlander1995)wehaveobserved
significantvariationin theextentto whichaparticularrepresentationaidsreason-
ing tasks.Thesevariationsarisefrom variationsin thesubjectscapacityto utilise
therepresentationeffectively. It seemsthat for somepeoplegraphicalrepresent-
ationscan be a very poor choiceto supportsometasks.We believe this work
is importantin the evaluationof graphicalrepresentationsof Softwarearchitec-
turebecausethis variability maymaskthediscoveryof representationsthatvery
effectivefor someclassesof user. Weanticipateobservingsimilareffectsfor Soft-
wareArchitecturerepresentations.

We believe all threeof thesecognitive issuescanbeusedto motivatethedesignof
SoftwareArchitecturerepresentationsthatarefinely tunedto supportspecifictasks
effectively. Thesecombinedwith the semanticapproachdiscussedin the previous
sectionoffer goodmethodsto analysearchitecturalrepresentations.In thenext sec-
tion weconsidersomepreliminaryempiricalinvestigationsthataremotivatedby our
semanticandcognitivework on representations.

4 EMPIRICAL STUDIES

Having outlinedour theoreticalapproaches,bothin theformalmodellingof proper-
tiessoftwarearchitecturesandin thecognitively-situatedmodelsof (diagrammatic)
designnotations,we now turn to the third strandof our research:that of our more
pragmaticandpracticallybasedempiricalwork.

Theaimof ourempiricalwork is to developasharpcharacterisationof theroleof
softwarearchitecturein practiceandtogatherconcreteexamplesof its use.Wereport
heretheinitial findingsof astudyof thedevelopmentof designsfor software-based,
automotive enginemanagementsystems(this datahasbeenanonymisedto protect
theconfidentialityof thesupplier).Theanalysisof thesedesignsis particularlyin-



6 UnderstandingSoftware Architecture: A SemanticandCognitiveApproach

terestingin the light of our work of Section2, asagainherewe areconsideringthe
classof industrialembeddedcontrollers.Indeed,thestructureandnotationsusedin
thesedesignsarequiteclosein conceptto thePLCnotationsdiscussedin Section2.

4.1 Case Study: Architecture in Engine Management Systems

Thedataweareanalysingconsistsof sequencesof designreview reports,whichde-
tail thestepwisedevelopmentof designsfor enginemanagementsystems.Any given
project(a singleenginemanagementsystem)consistsof a numberof modules,typ-
ically between8 and12modulesperproject,with aseparatedesignfor eachmodule.
A modulecontainscomponents(any numberfrom 1 to over160permodule)which
are of one of threetypes:‘control flow diagram’ (cf); ‘data flow diagram’ (dfd);
and‘code’ (cd). Control flow diagramsareeffectively finite stateautomatawhich
indicatethe flow of control throughthe module.The codedefinesfunctionscom-
putedover variablesandthe dfd’s specifyhow thesevariablesaresharedbetween
components.

Thedevelopmentof designsfollowsarigorousdesign/review cycle.A design(for
somemodule)is producedby a memberof the designteamandthenreviewed by
two othermembersof the team,who recordtheir findingsin a review report.The
reviewersrateeachcomponentand,give themoduleanoverall rating.

We have collectedtheentiresequenceof designreview reportsfor four separate
projects.Intotal,over thefour projectsthereare39modules,consistingof 852com-
ponents.Overall, theseweresubjectedto a total of 169 reviews. This representsa
substantialand rich datacorpus,presentingus with a highly detailedview of the
evolutionof thesedesigns.

4.2 Hypotheses and Analysis of Data

Initial examinationof thedataindicatesthat,aswith PLC languages,thedevelopers
useddesigndescriptionsin which control flow dominates.From this we hypothes-
isedarchitecturalstructurewill predominatelyresidein thecontrolflow descriptions,
suggestingthat:(i) partsof thecf (controlflow) componentswouldexhibit signific-
antly greaterstability over thedesign/review processthanwould othercomponents;
(ii) similar controlpatternsrecuracrossdifferentprojects;(iii) designnotationsem-
phasisethestableaspectsof controlflow.

In our initial analysisof the datawe have testedthefirst of thesehypothesesby
determiningthe averagenumberof changesmadeto any onecomponentduring a
review, andsortingthe resultsby typeof component(i.e. cf, dfd andcd). Figure1
presentstheseresultssummarisedover the four projects.This tableindicatescon-
firmationof our initial hypothesis,with dfd componentsbeingchangedon average
0.705timesperreview ascomparedwith the0.493averagefor cf components.This
doesindeedconfirmthatdataflow componentswithin a designarerevisedsignific-



CONCLUSIONS 7

0.75

0.625

0.5

0.375

0.25

0.125

0

Project C Project D Project F Project T

Figure 1 Averagechanges/review of (from left to right) cf, dfd andcd components.

antly moreoften thanarecontrol flow components.Naturally, theseresultshide a
greatdealof detail– detailwhich requiressubstantialfurtheranalysis.

5 CONCLUSIONS

Theconceptof SoftwareArchitecture,weargue,requiresunderstandingin acontext
which is wider thansimply ‘design’. Our belief is that it shouldbe analysedasa
communicationmethod.To analysesoftwarearchitectureswith thisview requiresan
understandinggroundedin theoriesof formal semantics;of theeffect of represent-
ationon humanreasoning;andin anempiricallyvalidatedunderstandingof theuse
of softwarearchitecturein practice.In particular, empiricalwork is importantasa
checkonhypothesesandontheapplicabilityof thework undertakenin theothertwo
researchstrands,andin theirsynthesis.

It is our view thatonerouteto providing a stablebasisfor softwareengineering
is to draw practicein softwareengineeringcloserto thatof conventionalengineer-
ing. Our researchinto high-integrity systems(MacKenzie1996,MacKenzie1995)
indicatesthatsafetyargumentsin conventionalengineeringarepredicateduponthe
continuityof theconcreteartifactbeingdesigned.Engineersreusegenericarchitec-
turesandcomponentsbecausetheir propertiesareunderstoodandagreeduponby
all thedifferenttechnicalspecialitiesinvolvedin thedesignandoperationof thear-
tifact.Thearchitectureis thestablestructurewhich characterisestheartifactduring
detaileddesignandcarriesits main characteristicsfrom versionto versionof the



8 UnderstandingSoftware Architecture: A SemanticandCognitiveApproach

product.We believe thatthework outlinedin thispaperofferssomeprogressin this
direction.

REFERENCES

Anderson,S.andTourlas,K.: 1997,Diagramsandprogramminglanguagesfor pro-
grammablecontrollers,ProceedingsFormalMethodsEurope’97, Vol. 1313
of LNCS, Springer, pp.1–??

Anderson,S.andTourlas,K.: 1998,Designfor proof: An approachto thedesignof
domainspecificlanguages,Third FMICS Workshop. To appearin Formal
Aspectsof ComputerScience.

Gurr, C.: 1998,On theisomorphism,or lack of it, of representations,in K. Marriot
andB. Meyer (eds),Theoryof VisualLanguages, Springer. In press.

Gurr, C. A.: 1997,Knowledgeengineeringin thecommunicationof informationfor
safetycritical systems,The Knowledge EngineeringReview . Cambridge
UniversityPress.In Press.

IEC: 1993, IEC 1131-3: ProgrammableControllers – Part3: ProgrammingLan-
guages, IEC 1131-3:1993(E)edn,InternationalElectrotechnicalCommis-
sion.

IEC: 1995,Draft IEC 1508– Functionalsafety:safetyrelatedsystems, International
ElectrotechnicalCommission.

Kletz, T. A.: 1986,HAZOPandHAZAN:noteson theidentificationandassessment
of hazards, Institutionof ChemicalEngineers,Rugby, UK.

MacKenzie,D.: 1995,A worm in thebud?:computers,systemsandthesafety-case
problem,in T. HughesandA. Hughes(eds),TheSpreadof theSystemsAp-
proach, ChicagoUniversityPress.To appear.

MacKenzie,D.: 1996,How doweknow thepropertiesof artifacts?:applyingtheso-
ciologyof knowledgeto technology, in R. Fox (ed.),Technological Change,
Harwood,London,pp.247–263.

Perry, D. E. andWolf, A. L.: 1992,Foundationsfor thestudyof softwarearchitec-
ture,ACM SIGSOFTSoftwareEngineeringNotes17(4), 40–52.
*http://www.bell-labs.com/user/dep/work/papers/swa-sen.ps

Stenning,K., Cox, R. andOberlander, J.: 1995,Contrastingthecognitiveeffectsof
graphicalandsententiallogic teaching:reasoning,representationandindi-
vidualdifferences,LanguageandCognitiveProcesses10.

Stenning,K. andOberlander, J.:1995,A cognitivetheoryof graphicalandlinguistic
reasoning:logic andimplementation,CognitiveScience19, 97–140.

Stenning,K. andYule, P.: 1997,Imageandlanguagein humanreasoning:a syllo-
gistic illustration,COgnitivePsychology34(2), 109–159.

Vesley, W.: 1981,Fault treehandbook,TechnicalReportNUREG0492, USNuclear
RegulatoryCommission.


