
Quality Considerations in SAP Architectures 1

Wolfgang Theilmann*, Roger Kilian-Kehr*

* SAP Research, CEC Karlsruhe, Vincenz-Prießnitz-Str. 1,
76131 Karlsruhe, Germany

{wolfgang.theilmann, roger.kilian-kehr}@sap,com

Abstract. This paper provides an industrial perspective on the relationship
between architectural issues and quality concerns in SAP. We show that quality
concerns matter for different kinds of architectures addressing different
perspectives on SAP systems such as technology, business logic and business
view. Furthermore, the system lifecycle also plays an important role as
architectures and kind of quality questions evolve along this lifecycle. We
derive 3 key requirements for future system architectures and the modeling of
quality characteristics: (1) the ability to deal with underspecified environments,
(2) the embedding into the development process and (3) joining of
programming models with architectures.

Keywords: SAP architectures, system lifecycle, quality concerns, performance,
programming models

1   Introduction

Quality concerns have always played an important role in the design of business
applications at SAP [1]. However, current cost pressure in IT industries has lead to an
even more important role of quality considerations in the development process and
the design of SAP architectures.

The costs of IT systems are mainly determined by 3 factors: cost of engineering,
cost of provisioning and cost of operation. Exploiting economies of scale significant
further cost reduction can be achieved by increasing the effort in developing solutions
of high quality which then allow for provisioning and operation at lower costs. Of
course, this only works out if there is a positive tradeoff between the additional effort
and the saved provisioning/operation costs.

This paper provides an industrial perspective on the relationship between
architectural issues and quality concerns in SAP. This is done in the following steps.
Section 2 introduces the solution lifecycle and shows when and by whom quality
concerns are dealt with. Section 3 explains some key characteristics of SAP
architectures and how these address quality requirements. Section 4 presents a
complexity assessment for different quality and sketches specific requirements for

1 The research leading to these results is partially supported by the European Community's
Seventh Framework Programme ([FP7/2001-2013]) under grant agreement n° 216556



efficiency issues. Last, Section 5 concludes with a summary and some key
requirements for future system architectures and the modeling of quality
characteristics.

2   Solution Lifecycle

Quality concerns need to be dealt with along the complete lifecycle of a solution. The
following figure addresses the main phases and steps of this lifecycle at SAP.

Fig. 1. Basic solution lifecycle at SAP (cycles, feedback loops and partial new development not
shown in this figure).

Along this lifecycle the following main roles deal with the following issues:
1. Solution Manager provides estimated quality KPIs.
2. System architect specifies assumed characteristics of building blocks.
3. Component Designer relates requested quality with characteristics of

underlying components.
4. Developer refines previously assumed quality characteristics,
5. Developer derives actual quality characteristics from unit tests.
6. Tester validates requirements from solution manager.
7. Consultant/Customer specifies actual artifacts to be used (=> first TCO

estimate).
8. Consultant/Customer specifies actual landscape (=> final TCO determination).
9. Administrator observes system whether quality targets are met,
10. Consultant/Customer explores impact of planned changes.

Noteworthy, that this lifecycle is a quite simplified abstraction in 2 ways: First, the
actual solution lifecycle includes various cycles and feedback loops which allow for
an iterative development process that can benefit from early prototypes and tests and
feed their results back into earlier stages of the lifecycle. Second, actual development
almost never starts from scratch but faces an already existing system which needs to
be modified or extended. This obviously limits the freedom but also the uncertainty
for all the involved stakeholders.

Requirements
Definition

Design Develop Deploy OperateSpecify

Solution Lifecycle

Architecture
Definition

Component
Definition

Develop-
ment

Unit
Test

Integration
Test

Config Monitoring

Ph
as

e
U

se
 C

as
e

Landscape
Planning Evolution

1 2

3

4

5

6

7

8

9

10



3   Characteristics of SAP Systems

SAP systems range  from midsize  to  very  large  size  systems,  the  latter  consisting  of
several hundred million lines of code and deployed on hundreds of distributed
compute nodes. In addition to this sheer size, there are a couple of other relevant
characteristics which are briefly sketched below.

Several kinds of Architectures. There is no single architecture of an SAP system
that covers all perspectives of the relevant stakeholders. Specific architectures are

the technology platform [2], providing generic IT platform and integration
functionality,
the business process platform, providing general business logic which can be
flexibly used, combined and composed,
applications architectures, representing actual and possibly customer or
industry specific solutions,
service architectures, embedding an IT solution into a bigger business service
solution, and
system landscapes, describing the actual infrastructure that operates an IT
solution and its configuration.

All these architectures provide a different view on different quality concerns for
different stakeholders and at different granularity. A proper development process
must ensure that information flows correctly between these different perspectives and
overall quality concerns can be properly managed and achieved.

System (Development) Paradigms. SAP  has  adopted  the  paradigm  of  service-
orientation for developing and providing business functionality. The so-called
Enterprise SOA approach [3] goes far beyond regular Web services as Enterprise
services feature clear business semantics (they are structured according to a
harmonized enterprise model based on business objects, process components, and
global data types), quality and stability (they safeguard a stable interface for future
versions) and adherence to standards (they are based on open standards such as
WSDL and UN/CEFACT CCTS).

Furthermore, a sound model-based development approach has been chosen which
provides multiple rich models for both business (integration scenarios, process
components) and IT perspective (business logic, integration logic, configuration).

Customer Engagement. Customers are involved in the specification of new SAP
solutions already in the very first phases of a solution lifecycle. This co-development
serves for creating solutions which eventually meet market needs in terms of
functionality but also quality requirements. However, the (quality) requirements and
environment of specific customers are largely unknown at design time. This
significantly increases the difficulty at design time to predict quality properties and
costs of only vaguely known target environments. Consequently, traditional SAP
systems require thorough go-live check at a customer site before they can become
operational.



Quality Concerns @SAP. Following, we sketch how the most important quality
aspects are addressed in SAP.

Scalability is  clearly  a  cross-cutting  concern  that  spans  across  all  kinds  of
architectures. However, scalability is largely solved by the technology platform which
allows for linear scalability of the application server cluster.

Availability is largely achieved in the technology platform by a fault tolerant setup
of application server & database.

Responsiveness (response time) is again a cross-cutting concern. There is a global
requirement of 1-2s maximal response time for interactive applications. This
requirement is broken down via budgeting to architectural layers and components.

Efficiency (resource consumption) is another cross-cutting concern. A sizing
formula [4] allows relating usage profile per applications with resource demands.
There are currently running efforts to build a sizing repository (for components).
However, actual customer requirements for efficiency can be very specific and SMEs
in particular are very cost-sensitive. This motivates current research efforts for multi
tenancy support, i.e. resource sharing between different customers/tenants.

Extensibility (as part of maintainability) is mainly addressed at the business process
platform. Here a dedicated framework part of the architecture assures various degrees
of seamless extensibility.

Portability is solved by the technology platform by avoiding usage of any
hardware/OS/DB-specific features.

Other quality aspects such as usability and security are mainly addressed by
development guidelines and do not directly reflect in any architecture.

4   Complexity & Challenges

The following figure qualitatively summarizes the complexity of the various quality
concerns at SAP in terms of architectural complexity (i.e. how many architectures are
involved) and process complexity (i.e. how many stakeholders and lifecycle phases
are involved).

Fig. 2. Architecural and process complexity of quality concerns at SAP.

architectural
complexity

process
complexity

*scalability

*responsiveness
*efficiency

*availability

*portability

*extensibility



As illustrating example, we sketch some specific challenges for managing efficiency.
First, there is the underspecified environments which means that (a) concrete

deployment and infrastructure (hardware, DB, OS) are unknown at design time, (b)
customer requirements/behaviour unknown at design time and still underspecified at
go-live time, (c) actual control flow is known vaguely (at design time) and slightly
better (at testing time – scenario-based testing) again better after business
configuration and even better at run-time, (d) component developers are focussed on
one architectural layer while non-functional characteristics of lower layers are only
vaguely specified and subject to change, (e) the number of configuration & usage
variants prevents from exhaustive testing and (f) scenarios of dynamic service
composition are even harder to predict.

Second, the various architectures and programming models are just loosely
coupled which means that no formal/provable relationship between architecture
models and programming artefacts exists. It is currently unclear whether a closer
coupling is feasible at all with general purpose programming languages.

Third, technical expertise on non-functional behaviour of artefacts is widely spread
and poorly formalized, so it’s hard from an overall perspective to say who
knows/does what and when.

5   Conclusions

Quality issues play in increasing role for SAP systems in order to allow for more cost
effective provisioning and operation of these. Facing the size and complexity of SAP
systems they are extremely hard to properly manage. Future software/system
architectures and their associated models could play an important role for better
management of these quality issues. In order to realize that the following key
requirements need to be solved:

Specification/prediction of quality aspects must be supported in underspecified
environments (e.g. infrastructure, service composition, usage profile unknown).
The decoupling of the roles of software and service provider (only latter one
knows actual execution environment, customer requirements and service wiring)
must be acknowledged. Last, quality characteristics in flexible service
composition need better support.
Adequate quality management requires joining programming models and
architectures where abstractions on the one side meet with abstractions on the
other.
Quality management requires deep embedding into the development process with
clear specification who knows/does what and when. Adhoc solutions do not scale
for large organisations/systems.

However, all these requirements and possible related measures need a careful
assessment of the tradeoff between required additional engineering effort vs. saved
provisioning and operation costs. For having a business case a clear return on
investment (ROI) needs to be specified.



References

1. SAP Web-Site, http://www.sap.com
2. SAP NetWeaver platform, https://www.sdn.sap.com/irj/sdn/nw-products
3. SAP Enterprise SOA, https://www.sdn.sap.com/irj/sdn/enterprisesoa
4. Susanne Janssen and Ulrich Marquard: Sizing SAP Systems, SAP Press, ISBN 978-1-

59229-156-4, http://www.sap-press.com/product.cfm?account=&product=H2904

http://www.sap.com
https://www.sdn.sap.com/irj/sdn/nw-products
https://www.sdn.sap.com/irj/sdn/enterprisesoa
http://www.sap-press.com/product.cfm?account=&product=H2904

