
Experience with safe dynamic
reconfigurations in component-based

embedded systems

CBSE’07 - 9.7. - 11.7.2007 - Medford, MA, USA

FranceTelecom R&D
MAPS/AMS Lab Grenoble, France

Juraj Polakovic - Sébastien Mazaré
Jean-Bernard Stefani - Pierre-Charles David

SARDES Project, INRIA
INRIA Rhône-Alpes, Grenoble, France

CBSE’07 Medford, MA, USA 09.07. - 11.07.2007

Dynamic reconfiguration in emb.systems

Dynamic reconfiguration - “a system’s capability to allow architecture (and
behaviour) modifications during execution, without service interruption”

 applications in OS
 updates and bug-fixes
 adaptive algorithms
 extensions (3rd party modules, application-specific extensions, …)
 monitoring, debugging (on-the-fly)
 towards autonomic computing
 …

 challenges
 flexibility, efficiency, robustness, simplicity (Hicks)

CBSE’07 Medford, MA, USA 09.07. - 11.07.2007

Programming reconfigurations

 We build component-based OS …
 We have custom dynamic reconfiguration mechanisms …

 reconfigurations as architectural change - add, remove, replace, (re)bind, attributes

 But …
 reconfiguration programming in C - difficult and error-prone, too low-level
 how to maintain a large device park with different configurations (mobiles)?
 additionnal constraint - mechanisms scalable down to sensor networks

• ATmega128/2561 (AVR) with 4kb (8kb) main memory and 128kb (256kb) program memory

 Idea: use a high-level reconfiguration language
 combined with a component-based configuration representation (such as ADL)
 build an appropriate support for resource-limited devices

 Alternatives
 construct the OS and applications differently, i.e. VM (Mate on TinyOS)
 use a native interpreter for the reconfiguration language (how in sensors?)

CBSE’07 Medford, MA, USA 09.07. - 11.07.2007

Extensive use of the Fractal comp. model

 build custom reconfigurable OS with the Fractal/Think framework
 Think - a C implementation of the Fractal Component Model (native components)
 systems ‘à la carte’ - everything as a component - optimal runtime performances
 no predefined system philosophy (micro-kernel, exokernel etc.)
 no predefined core functionnality (scheduler, memory management etc.)

 custom dynamic reconfiguration mechanisms (Euromicro CBSE’06)
 various mechanisms available, different trade-offs performance-flexibility
 separation of concerns (functionnal vs. control) - using Fractal control interfaces
 custom granularity of reconfigurations (Fractal’s hierarchic composition)
 mechanisms added by the compiler, based on user specification

CBSE’07 Medford, MA, USA 09.07. - 11.07.2007

Programming reconfigurations - overview

CBSE’07 Medford, MA, USA 09.07. - 11.07.2007

Programming reconfigurations - overview

CBSE’07 Medford, MA, USA 09.07. - 11.07.2007

FScript language

 FScript (P.-C. David, PhD)
 reconfiguration DSL for Fractal (access to all Fractal API’s)
 simple statements, actions, control structures
 FPath expressions to navigate/select specific elements - sets (itf, comps etc.)

k = $root/child::kernel
n = new(‘new_alloc’);
o = $root/child::alloc;
k_alloc = $k/child::*/interface::alloc;

add($k, $n);
suspend($k, $k/child::alloc);
stop($o);
unbind($k_alloc);
bind($k_alloc, $n/interface::alloc);
start($n);
resume($k);
remove($o);

component SmallNetKernel {
 provides Net as net

 contains net = net.lib.stack
 contains alloc = memory.malloc
 contains eth = net.lib.tulip

 binds this.net to net.net
 binds net.eth to eth.driver
 binds net.alloc to alloc.alloc
 binds eth.alloc to alloc.alloc
}

ADL
FScript

CBSE’07 Medford, MA, USA 09.07. - 11.07.2007

FScript support for embedded OS

 FScript « offline » compilation
 in - system actual configuration (ADL), FScript reconfiguration program
 out - binary reconfiguration comonent (with new instances)
 verifications (using simulation, itf types, etc.)

 Target device - Think-based component OS
 communication link - FScript compilation host
 dynamic loader
 minimal FScript run-time

CBSE’07 Medford, MA, USA 09.07. - 11.07.2007

Problems

 Consistency of architecture views
 offline reconfiguration compiler vs. device

 FScript conditionnals and FPath expressions compilation
 or, how to compile the reconfig. program in an intelligent way
 run-time evaluation needs memory allocation
 current solution - simulation

 Size of the resulting binary component !!
 final binary component - relocatable object
 using ELF format
 overhead due to the Think glue code - cross-referenced C variables
 overhead proportionnal to # of new components, not the reconfig. code
 not yet suitable for sensors (ex. simple reconfig: 4,5kb…)

CBSE’07 Medford, MA, USA 09.07. - 11.07.2007

Conclusion

 FScript reconfiguration programs compilation seems promising
 still ongoing
 some ideas for offline pre-linking the reconfig. component - no ELF bloat

 Fractal/Think and FScript meet challenges of reconfigurable OS
construction

 flexibility
 efficiency
 robustness
 simplicity

 Think framework
 http://think.objectweb.org

CBSE’07 Medford, MA, USA 09.07. - 11.07.2007

Future work

 Event-based execution and dynamic reconfiguration

 Optimisations, or “selective architectural optimisations”
 customized glue code generation
 eliminate selectively all overhead due to the use of components
 combine optimisations and reconfiguration specifications
 impact on the FScript compilation - probably eliminate the ELF bloat

 Custom Java Virtual Machines on resource-limited devices
 customized kernels for JVM + OSGi
 Atmel AT926 (+Jazelle)
 dynamic reconfiguration ?

