
Capturing Web services Provider
Constraints – An Algorithmic
Approach

Sudeep Mallick & S. V. Subrahmanya
Infosys Technologies Ltd.
Bangalore, India.
({sudeepm, subrahmanyasv}@infosys.com)

CBSE 2007, Medford, MA
July 10, 2007

2/25

Agenda

 Context
 Understanding Services and Web services
 Special Service Provider configurations
 Proposed algorithm
 Results
 Implementation – proposed tool
 Conclusion

3/25

Service provisioning

 Multiple service providers

 Services available at multiple cost and
quality combinations

 Gold, silver, bronze, etc…

 Complex service provider implementation
combinations and dependencies

4/25

Service provider coalitions

 Service providers coalitions and
competitions

5/25

The problem

 Optimal selection of service
implementations (concrete services)
from among various service providers
 Cost
 Quality of Service

 Exogenous and endogenous cases

6/25

Criticality of the problem
 Garnter: SOA will be used in more than

50% of new, mission critical applications
designed in 2007 and more than 80% by
2010 with 0.7 probability

 www.amazon.com
 www.google.com
 www.strikeiron.com
 www.esri.com/software/arcwebservices/
 www.globexplorer.com
 SaaS – Software as a Service model

7/25

Service provider configurations - 1

 Same service available from the same
service provider at different price /
QoS attribute value

8/25

Service provider configurations - 2

 Same service could be available at different
cost / QoS attribute value from the same
service provider when bundled (composite
services) with other services from the same
provider, in case the interfaces match

9/25

Service provider configurations - 3

 Two or more service providers could enter into
contractual agreements for preferential deals
when operating as a coalition

10/25

Formal representation of services

 Service enabled business process as a
weighted multi-stage graph

 Weights representing cost / quality

 Service clusters: services grouped into
business process stages representing same
functionality

 Service communities: matching input and
output interfaces

11/25

Clusters and communities

Service
clusters

Service communities

Concrete
services

Business process stage i Business process stage i+1

12/25

Definitions
 Web service s is a tuple s(p, f, i, o, c, q, m)

 p = provider; f = functionality; i = input interface; o = output
interface; c = cost; q = aggregated quality metric; m =
composite number

 Web services cluster CL is a set of concrete services that
provide functionality F
 CL(F) = {s | s.f = F}

 Web services community CM is a set of concrete services in
a cluster that have the same interfaces I, O
 CL(F, I, O) = {s | s E CL(F) Λ s.i = I Λ s.o = O}

Above formalizations are built upon the basics presented in Gao, Y., Na, J., Zhang, B., Yang, L., Gong, Q.: Optimal Web
Services Selection Using Dynamic Programming, Proceedings of the 11th IEEE Symposium on Computers and
Communications (ISCC'06) (2006)

13/25

Proposed algorithm – Stage 1

 Define the service tuple
S(s,p,f,i,o,c,q,m) and create service
description data structure

 Create uniquely identifiable services
for multiple cost-quality combinations
from same provider

 Set value of m for composites

14/25

Input from service providers

15/25

Result after stage 1

Same service implementation from same provider

value of m

Participating services in a
compositevalue of f

value of i, o

value of q
value of c

value of pvalue of s

16/25

Proposed algorithm – Stage 2
 Partition initial data into clusters (same value for f)

 Partition each resulting cluster into data groups
having same values for i and o and m = null

 Partition each resulting cluster into data groups
having same values for i and o and m != null

 For communities having m !=null create a link in a
community chain data structure (CC) having same
value of m and create rank k

17/25

Proposed algorithm – Stage 3
 Pre-condition

 List of clusters and communities ready from stage 2

 Create matching among communities in cluster j and j+1 for all clusters

 Cluster j: IF (community NOT IN CC) OR ((community IN CC) AND (is the last
position community for an m))

 Cluster j+1: (community NOT IN CC) OR ((community IN CC) AND (is the last
position community for an m))

 THEN match the communities

 IF matching THEN create matches

 For communities in CC

 For each value of m establish matches

 From k = 2 to largest value of rank k

 Create matches between communities having rank k-1 and k

18/25

Stage 3

 Post condition
 Set of matched communities and

services contained therein

Community chain (= composite)

identified by a value of m != null

rank 1 rank 2 rank 3

Matching
services
outside the
composite
(m= null or
m != null)

Matching
services
outside the
composite
(m= null or
m != null)

19/25

Results

20/25

Results

21/25

Generality of the algorithm
 Single provider, multiple simple services at single or

variable cost – quality combinations
 Single provider, multiple composite services at single

or variable cost – quality combinations
 Multiple provider, multiple services (simple /

composite) at single or variable cost – quality
combinations with composites formed from the same
respective service providers

 Multiple provider, multiple services (simple /
composite) at simple or variable cost – quality
combinations with coalitional composites formed
across multiple service providers

 Combination of simple and composite services at
various cost – quality combinations for all the above
conditions

22/25

Analysis of the algorithm

 Stage 1 – O(N): N is total number of
services

 Stage 2 – O(N)
 Stage 3 – O((K-1)(N/K)^2): K is total

number of functional stages i.e.
constant for a problem => O(N^2)

 Hence, the proposed algorithm is
O(n^2) primarily due to the matching
stage

23/25

Proposed tool

24/25

Conclusion

 Formal representation of varying
cost-quality combinations

 Formal representation of coalitional
constraints among service providers

 Algorithm for derivation of DAG from
the formal representation

 Resulting DAG could be subjected to
optimization methods (IP, DP, etc.)

25/25

 Questions

