
Integration of Time Issues into
Component-Based Applications

Saudrais Sébastien – Olivier Barais
–Noël Plouzeau

Irisa project Triskell

Goals

 Add time into components
 QoS
 Response time

 Keep functionalities
 Separation of concerns

 Time vs functionalities
 Composition validation

Agenda

 Meta-model of components
 Behaviour
 Contract

 Add Time
 In behaviour
 In contracts
 Composition

 Future works

Meta-model of components

 Close to UML2 component model:
 methods,
 interfaces,
 ports,
 component,
 composite

 Contract between component
 I/O automata for the behaviour

Behaviour

 Process Algebra
 Send-receive
 A send (receipt) must have an acknowledge

 I/O automata for the verification

Contract

 Ports compatibility
 4 levels of contract [Beugnard99]:

 Syntactic (IDL)
 Behavioural (pre-post conditions)
 Synchronisation (services dependencies)
 QoS

 More and more negotiable

Agenda

 Meta-model of components
 Behaviour
 Contract

 Add Time
 In behaviour
 In contracts
 Composition

 Future works

Add time

 Where to add :
 Behaviour (what is provided by the component)
 Contract (what is required by the component)

 Validation of assembly
 Validation of existing contracts
 Check the QoS contracts

Add time into behaviour

 Formalism :
 With time
 Close to I/O automata

 Timed Automata
 Automata with clocks
 Transition with timed guard

 Definition of pattern
 Execution time, delay, period

Timed automata

 A timed automaton is defined by:
 S :set of locality
 L : labels
 X : set of clocks
 T : transition relation

 T ⊆ SxLx2Cx h(C)xS
 2C : set of clocks to initialise
 h(C) : clocks constraints

 P : set of properties into localities

Timed Automaton

s5

S6

TA1

?getSound
X1:=0

!getSound$
X1<4

!sound

?sound$

s4

S7
rec_sound

Time pattern

 A time property has:
 A service call, message
 A guard
 Properties in locality
 How to apply it

 TA with parameters

Execution time pattern

 Execution time after a message

execution_

message_

begin

execution_

message_end

ET

message ; x:=0 x ~ c

Applying pattern (1): response time

s4

s5

s6

S7
rec_
sound

?getSound

!getSound$!sound

?sound$

RT

call_
message_

begin

call_
message_

end

Message;
x:=0

message$;
 x ~c

Applying pattern (1): response time

RT

call_
?getSound

_begin

call_
?getSound

_end

?getSound ;
x:=0

!getSound$;
 x <4

s4

s5

s6

S7
rec_
sound

?getSound

!getSound$!sound

?sound$

Applying pattern (1): response time

RT

call_
?getSound

_begin

call_
?getSound

_end

?getSound ;
x:=0

!getSound$;
 x <4

s4

s5

s6

S7
rec_
sound

?getSound
x1:=0

!getSound$!sound

?sound$

Applying pattern (1): response time

RT

call_
?getSound

_begin

call_
?getSound

_end

?getSound ;
x:=0

!getSound$;
 x <4

s4

s5

s6

S7
rec_
sound

?getSound
x1:=0

!getSound$
x1<4 !sound

?sound$

Applying pattern (1): response time

RT

call_
?getSound

_begin

call_
?getSound

_end

?getSound ;
x:=0

!getSound$;
 x <4

s4

S7
rec_
sound

?getSound
x1:=0

!getSound$
x1<4 !sound

?sound$

s6
call_

?getSound
_end

s5
call_

?getSound

_begin

Applying pattern (2): execution time

execution_
!getSound$

_begin

execution_
!getSound$

_end

ET(!getSound$,<,2)

!getSound$;
x:=0

x < 2

s4

S7
rec_
sound

?getSound
x1:=0

!getSound$
x1<4 !sound

?sound$

s6
call_

?getSound
_end

s5
call_

?getSound

_begin

Applying pattern (2): execution time

execution_
!getSound$

_begin

execution_
!getSound$

_end

ET(!getSound$,<,2)

!getSound$;
x:=0

x < 2

s4

S7
rec_
sound

?getSound
x1:=0

!getSound$
x1<4
x2:=0

!sound

?sound$

s6
call_

?getSound
_end

s5
call_

?getSound

_begin

Applying pattern (2): execution time

execution_
!getSound$

_begin

execution_
!getSound$

_end

ET(!getSound$,<,2)

!getSound$;
x:=0

x < 2

s4

S7
rec_
sound

?getSound
x1:=0

!getSound$
x1<4
x2:=0

!sound

?sound$

s6
execution_

!getSound$
_begin

s5
call_

?getSound

_begin

Applying pattern (2): execution time

S5

S6_exec
execution_
!getSound$

_end

?getSound;
X1:=0

!getSound$;

X1<4;
X2:=0

!sound

?sound$

X2<2

s4

S7
rec_sound

s6

execution_
!getSound$

_begin

execution_
!getSound$

_end

ET(!getSound$,<,2)

!getSound$;
x:=0

x < 2

Applying pattern (2): execution time

execution_
!getSound$

_begin

execution_
!getSound$

_end

ET(!getSound$,<,2)

!getSound$;
x:=0

x < 2

s4

S7
execution_
!getSound$_

end

?getSound
x1:=0

!getSound$
x1<4
x2:=0

!sound
x2<2

?sound$

s6
execution_

!getSound$
_begin

s5
call_

?getSound

_begin

Add time into contracts

 4th level contract
 Attached to a required interface

 Timed temporal logic :TCTL
 CTL with time quantifier
 with time :

 Use patterns
 Period of c of the property p :
 c units of time between 2 properties :

Assembly Verification

 The component behaviour must satisfy the
contracts

 Level 4 : TA against a TCTL formula
 Use of model-checker Kronos

Conclusions et Future works

 Time properties into components
 Separation of concerns
 Full implemented in Kermeta and Sintaks :

Meta-Model, Operations and contracts

 Future works:
 Time as an aspect (Need of a pointcut language)
 Introduce time into other formalisms

