
Performance-Driven Interface
Contract Enforcement for
Scientific Components

10th International Symposium on
Component-Based Software Engineering
Medford, MA USA
July 9-11, 2007

Tamara “Tammy” Dahlgren (dahlgren1@llnl.gov)
http://www.llnl.gov/comp/bio.php/dahlgren1

UCRL-PRES-232517

This work was performed under the auspices of the U.S. Department of Energy by the University of California
Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.

2

Performance-Driven Interface Contract
Enforcement for Scientific Components

Motivation
Babel Toolkit
Experiments
Summary

3

Applications built using plug-and-play
components depend on common interfaces.

Multiple implementations
conform to the same
specification

Provide same basic services
Require same basic inputs
Implementations can vary
significantly to include differences
in…

Algorithms
Solution accuracies

Underlying data structures
Implementation language(s)

C, C++, Fortran 77/9x/20xx, Python,
Java

Different organizations different development processes (and rigor)Different organizations different development processes (and rigor)

Application

Component
Repository

Component
C

Component
B

Component
A

4

Contracts added to common interfaces can
be used to improve software quality.
package vector version 1.0 {

interface Utils { …

double norm (in array<double> u, in double tol)
throws /* Exceptions */

sidl.PreViolation, NegativeValueException,
sidl.PostViolation;

require /* Preconditions */
not_null : u != null;
u_is_1d : dimen (u) == 1;
non_negative_tolerance : tol >= 0.0;

ensure /* Postconditions */
no_side_effects : is pure;
non_negative_result : result >= 0.0;
nearEqual (result, 0.0, tol) iff isZero (u, tol);

… }
}

package vector version 1.0 {
interface Utils { …

double norm (in array<double> u, in double tol)
throws /* Exceptions */

sidl.PreViolation, NegativeValueException,
sidl.PostViolation;

require /* Preconditions */
not_null : u != null;
u_is_1d : dimen (u) == 1;
non_negative_tolerance : tol >= 0.0;

ensure /* Postconditions */
no_side_effects : is pure;
non_negative_result : result >= 0.0;
nearEqual (result, 0.0, tol) iff isZero (u, tol);

… }
}
Example based on Babel’s vector.sidl (class) specification

vector.Utils.isZero (u, tol), which would typically be which would typically be O(|uO(|u|)|)

5

Computational Scientists are typically willing
to incur no more than 10% overhead.

Program
Initiation

Program
Termination

Total Execution Time

Program

Method (annotated)

Preconditions

Postconditions

Enforcement
Overhead

≤ 10% ?

Invariants

Hence, this research focuses on
performance-driven sampling.

Hence, this research focuses on
performance-driven sampling.

6

Performance-Driven Interface Contract
Enforcement for Scientific Components

Motivation
Babel Toolkit
Experiments
Summary

7

Enforcement automatically generated by
Babel* language interoperability toolkit.

vector
Utilities

Stub Code

Impl Code

Intermediate Rep

Skeleton Code

*Experiments were conducted using an experimental version of Babel based on release 0.10.8.

Enforcement Execution TracesEnforcement Execution Traces

Global Contract EnforcementGlobal Contract Enforcement

Annotated
SIDL files

Annotated
SIDL files

Annotated
SIDL files

8

Enforcement tracing currently provides
simple timing dumps on exercised contracts.

Program
Initiation

Program
Termination

Enforcement Trace Timing points

Program

Method (annotated)

Preconditions

Postconditions Invariants

9

Global enforcement options are based on
two parameters: frequency and type.
Enforcement Frequency

Never
Always
Periodic
Random

Adaptive Fit (AF)Adaptive Fit (AF)
Adaptive Timing (AT)Adaptive Timing (AT)

Simulated Annealing (SA)Simulated Annealing (SA)

Contract [Clause] Type
All

Constant-time
Linear-time

Preconditions*
Postconditions*

Invariants*
Simple Expressions

Method Calls
Results

*All combinations of the three Eiffel method clause types are actually available.

10

Performance-Driven Interface Contract
Enforcement for Scientific Components

Motivation
Babel Toolkit
Experiments
Summary

11

Input sets were varied for three of five
programs, forming a total of thirteen trials.

Exercise all supported functions to include successful
execution; one or more precondition violations; and one
or more postcondition violations. Sizes 6 (original), 10,
100, 1000, and 10000.

VTVector
Utilities

Exercise and check consistency of five mesh interfaces:
core, single entity query and traversal, entity array query
and traversal, single entity mesh modification, and entity
array mesh modification.

MT

GRUMMP
0.2.2b’s
Volume
Mesh

Retrieve faces as in A plus, for each set of faces,
retrieve their corresponding adjacent vertices. The
same input sizes were used.

AA

Retrieve all faces from the mesh in sets based on size of
input array. Sizes 1, 14587 (10%), and 145870 (100%).ASimplicial

Mesh

Retrieve all faces from the mesh then, for each face,
retrieve the adjacent vertices.MA

DescriptionProgramComponent

12

Baseline experiments resulted in a variety of
profiles using contract enforcement traces.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

A-1
AA-1 M

A M
T

VT-6
VT-10

AA-14
58

7
AA-14

58
70

VT-10
0

A-14
58

7
A-14

58
70

VT-10
00

VT-10
00

0

Trial

M
ea

n
T

ot
al

 E
xe

cu
tio

n
T

im
e

(p
er

 tr
ac

e)

Program Methods Preconditions Postconditions

10%

13

0%
20%
40%
60%
80%

100%
120%
140%
160%
180%

VT-6
VT-10
VT-10

0
AA-1 M

A
AA-14

58
7

AA-14
58

70 A-1 M
T

VT-10
00

A-14
58

7
VT-10

00
0

A-14
58

70

Trial

1

10

100

1000

10000

100000

1000000

10000000

Median Actual Enforcement Overhead Linear-time Clause Checks (% Total)
Total Number of Clause Checks

Enforcement performance was generally
better without tracing instrumentation.

Reason: A combination of tracing instrumentation and program speed.

10%

14

0%
20%
40%
60%
80%

100%
120%
140%
160%
180%

VT-6
VT-10
VT-10

0
AA-1 M

A
AA-14

58
7

AA-14
58

70 A-1 M
T

VT-10
00

A-14
58

7
VT-10

00
0

A-14
58

70

Trial

Median Overhead (AF, 5%) # Clauses Enforced (% Total)
Violations Detected (% Always) Median Overhead (Always)

Adaptive Fit (AF) sampling tuned clause
enforcement based on estimated overheads.

10%

15

0%
20%
40%
60%
80%

100%
120%
140%
160%
180%

VT-6
VT-10
VT-10

0
AA-1 M

A
AA-14

58
7

AA-14
58

70 A-1 M
T

VT-10
00

A-14
58

7
VT-10

00
0

A-14
58

70

Trial

Median Overhead (AT, 5%) # Clauses Enforced (% Total)
Violations Detected (% Always) Median Overhead (Always)

Adaptive Timing (AT) is biased toward ‘fast’
clauses relative to the cost of their methods.

10%

91% of violations in ‘fast’ clauses
with linear-time expressions!

16

Performance-Driven Interface Contract
Enforcement for Scientific Components

Motivation
Babel Toolkit
Experiments
Summary

17

Performance-Driven Interface Contract
Enforcement for Scientific Components

Goal: Improve quality of applications built of
automatically swapped, plug-and-play, third-party
components
Approach: Use performance criteria to tune contract
[clause] enforcement to the program

Reduce overhead compared to full enforcement (i.e., Always)
Increase coverage over other sampling techniques (when
appropriate)

Increase probability of detecting more violations
Findings: Performance-driven enforcement appears
to be most suited to contract clauses that are at most
moderately expensive to check

Based on user-specified overhead limit
Relative to program/methods

18

Thank you for your attention.

Any Questions?

19

For more information related to this work,
refer to the following web sites.

Components Project
http://www.llnl.gov/casc/components
Note: Experiments conducted using experimental prototype
of the Babel toolkit

Common Component Architecture (CCA) Forum
http://cca-forum.org

Center for Technology for Advanced Scientific
Component Software (TASCS)

SciDAC’s Plug and Play
Supercomputing
http://www.scidac.gov/compsci/TASCS.html

20

Supplemental Material

21

What can be done to ensure plug-and-play
components used and implemented correctly?

1950 1960 1970 1980 1990 2000

Executable
Assertions

1977
(Saib)

Assertions
(Routines)
June 1950
(Turing)

Assertions
(Programs)

1967/68
(Floyd/Hoare)

Design by
Contract

1985
[Eiffel]

High-level
Component

Specs
1994+
[ADL]

Applied Research/Demonstrations of Correctness

Theory/Proofs of Correctness

This research is based on contracts on the [common] interfaces.This research is based on contracts on the [common] interfaces.

22

Performance overhead concerns lead to no
or partial enforcement during deployment.

Selective

Sampled

All-or-nothing
Assertion type
Package/Class

Method

Severity

Individual

macros
Eiffel

JAF, Jass

iContract

APPC

SIFT, ConFract

Frequency-based*,
Random**

Most common

*Chilimbi and Hauswirth, “Low-Overhead Memory Leak Detection Using Adaptive Statistical Profiling,” ASPLOS, Oct. 2004.
**Liblit, Aiken, Zheng, and Jordan, “Bug Isolation via Remote Program Sampling,” PLDI ’03, June 2003.

23

Enforcement decisions are made on a
contract clause basis.

Program
Initiation

Program
Termination

Preconditions

Program

Method (annotated)

Preconditions

Postconditions

Postconditions

Performance-driven variants execute contracts only if accumulated
enforcement costs do not exceed user-specified overhead limit.

Performance-driven variants execute contracts only if accumulated
enforcement costs do not exceed user-specified overhead limit.

Invariants
Results

Simple Expressions
Method Calls

Invariants

Constant
Linear

24

Contract characteristics varied across
programs, in one case across input sets.

Contract Clauses Enforced (by policy)

63%30%20%88%145870
73%26%24%77%14587

33%
42%

50%

Postcond

80%
58%

50%

Precond

100%
27%

75%
50%
100%
MC

0%
73%

25%
50%
0%
SE

8%
.005%

25%
0%
50%

Linear

95%
99.995%

75%
100%
50%

Const.

AllVT
n/aMT

1
AA

AllA
n/aMA

Array
SizeProgram

One annotated method ≤ Two contract clause enforcement opportunities

25

0%
20%
40%
60%
80%

100%
120%
140%
160%
180%

VT-6
VT-10
VT-10

0
AA-1 M

A
AA-14

58
7

AA-14
58

70 A-1 M
T

VT-10
00

A-14
58

7
VT-10

00
0

A-14
58

70

Trial

Median Overhead (SA, 5%) # Clauses Enforced (% Total)
Violations Detected (% Always) Median Overhead (Always)

Simulated Annealing (SA) sampling performed
similar to AF, except in presence of lots of checks.

10%

