

Monitoring Architectural Properties in Dynamic Component-based Systems

Henry Muccini and Fabiano Ricci

Computer Science Department Università degli Studi dell'Aquila L'Aquila, Italy Andrea Polini and Antonia Bertolino

Istituto di Scienza e Tecnologie dell'Informazione - "A.Faedo" Pisa, Italy

This work has been partly supported by the EU FP6-2005-IST EU Project PLASTIC and by the national FIRB Project ART DECO

Agenda

- The Fact and the Problem
- Our Context
- Our Proposal: MOSAICO
- Experience
- Future Work

The Fact

- » Modern systems are increasingly required to be capable to evolve at run-time:
 - Changing Requirements
 - Changing Environments
 - Evolving systems

16:00 - 17:30 Working Session

Dynamically Reconfigurable PLAs

Change Management and Arch. Dynamics

... Adaptively Changing Architectues

- » Key Requirement: a dynamic system should keep the application at the same quality level after a change
 - We need to avoid service to deteriorate

In Component-based Systems...

- » This problem may even exacerbate in the context of CBSs
 - Components are usually black box
 - They can be added, replaced, and removed at run-time
 - The CBS has some qualities it has to satisfy

- » The quality of a CBS strongly relies on the
 - quality of components
 - quality of the CBS architecture

The Problem

CBS | P

- » Model-Checking
- » Performance Analysis
- » Testing
- » Dependendence Analysis
- » Security

Evolving CBS | P?

How can we guarantee that the CBS continues satisfying certain properties when evolving?

Static CBS vs Dynamic CBS

- » The focus moves from
 - validating the designed architectural configuration to
 - validating the changing over-time architecture.
- While in static architectures the verification can be done once and for all before deployment, for dynamic architectures validation becomes a perpetual activity to be performed during system execution too.
- » Traditional Analysis techniques need to be complemented by on-line analysis techniques

Our Context

» Dynamic CBS

- > Black-box Components
- > Plugin-based Architecture
 - Kernel Architecture
 - Pre-defined extension points
 - Components can be plugged In at runtime

- Architectural Properties

- > Pattern-oriented properties
 - Feature-oriented properties
- Assumption: traceability

Our Proposal: MOSAICO

- » MOSAICO: MOnitoring SA In COmponents
 - Monitoring the CBS implementation
 - based on architecture-level relevant information
 - to collect data on the CBS execution used
 - > to verify that the CBS satisfies certain architectural properties
 - > to verify that the original properties still hold on evolving CBS

Process (1/3)

- SA specification of the Kernel Architecture
 - Structural Specification
 - Interfaces and Extension Points

- **Properties Specification**
 - Using the Property Sequence Charts graphical notation [ASEJournal07]

Process (2/3)

- » AOP Instrumentation and Monitoring
 - The SA property is parsed and Monitoring Aspects are automatically created
 - > Using Aspect Templates
 - > For monitoring the desired interactions taking place in the property
 - The Monitoring Aspect is weaved into the CBS implementation

Process (3/3)

- » The Analyzer Engine
 - To compare the collected execution traces with the properties
 - > the analyzer must be able to check, for each notified event, if it is relevant in the context of any defined property
 - Based on "conformance" relations

Experience

- » J2EE NewsFeeder Application
- » To send feed rss in pdf format and via email
- » Black-box system
- » Makes use of design patterns
- » Three tiers:
 - Client, middle, and data tiers

The NewsFeeder Architecture

Properties

» J2EE Patterns

- A J2EE application can make use of several patterns: Model View Controller, Singleton, Factory, Business delegate, Transfer Object, and Data Transfer Object

» Our Focus

- Factory pattern: the business layer can be accessed only by calling an instance of the business factory
- Data Transfer Object pattern: manages the connection to the database and creates the "transfer" serializable object to maintain data received by the database

» Properties:

- POP1 Direct access to a POJO object (unwanted)
- POP2 DAO object creation (unwanted)
- FOP1 Business service creation feature
- FOP2 Web service request features
- FOP3 Remote validation service feature

Properties

b) POP1 expected behavior

POP1 Direct access to a POJO object

Monitoring

- » Mutated components with interactions breaking the rules defined by the various patterns have been plugged in
- » With reference to POP1 we inserted a FeedService component that directly accessed an existing POJO instance without first calling the BussinessFactory component instance.

Faulty Behavior

»MOSAICO correctly reported the violation.

-Clearly, though the approach seems to provide promising results, its validation as exposed here is still preliminary, and we plan to carry on more formal experimentation.

Future Work

- Validation
 - > Coverage
 - > Performance overhead analysis
- Service-Oriented CBS
 - > A standard configuration does not exist
- New Properties
 - > Security
- Run-time Weaving:
 - > This is unfeasible so far. To monitor a new property, we have to re-start the application

H.Muccini et al./ CBSE 2007: Monitoring Architectural Properties in Dynamic Component-based Systems

Monitoring Architectural Properties in Dynamic Component-based Systems

Henry Muccini and Fabiano Ricci

Computer Science Department Università degli Studi dell'Aquila L'Aquila, Italy Andrea Polini and Antonia Bertolino

Istituto di Scienza e Tecnologie dell'Informazione - "A.Faedo" Pisa, Italy

This work has been partly supported by the EU FP6-2005-IST EU Project PLASTIC and by the national FIRB Project ART DECO