An Approach for QoS Contract Negotiation in Distributed Component-Based Software

> <u>Mesfin Mulugeta</u> and Alexander Schill Dresden University of Technology, Germany

> > CBSE 2007 Medford, MA, USA July 9 – 11, 2007

Motivation

□ COMQUAD research project (2002 – 2004), TU Dresden

Non-negotiable

- Component Contracts [Beugnard et al, 1999]:
 - Syntactic,
 - Behavioral,
 - Synchronization, and —
 - Quality of Service (QoS). Dynamically negotiable
- A QoS contract specifies constraints on the nonfunctional properties like response time, throughput, etc.
- The consideration of QoS contracts requires the support of QoS Contract Negotiation

QoS Contract & Its Specification

Component Specification (CQML⁺)

ſ		Component	sp	pecification		
	Component implementation 1			Component implementation 2		
	QoS Profile A	QoS Profile B		QoS Profile A	QoS Profile B	
	Used QoS Offered QoS Resources	Used QoS Offered QoS Resources		Used QoS Offered QoS Resources	Used QoS Offered QoS Resources	

Example: Componentized Video Streaming

- "order service" GUI, Booking, PaymentProcessor
- "stream video" VideoPlayer, VideoServer

Example: QoS Contract Specification → QoS-Profiles a QoS-Profile

		VideoPlaver	VideoServer			
	uses ICompVideo (resolution, frame rate in s ⁻¹)	provides IUnCompVideo (resolution, frame rate in s ⁻¹)	Resource (CPU in %, bandwidth in Kbps, memory KB)		Provides ICompVideo (resolution, frame rate in S ⁻¹)	Resource (bandwidth in Kbps)
1	352x288, 30	352x288, 30	13.23, 2165, 31.6		352x288, 30	2165
2	352x288, 15	352x288, 15	8.90, 2146, 30		352x288,15	2146
3	352x288, 5	352x288, 5	5.90, 1852, 29.5		352x288, 5	1852
4	352x288, 1	352x288, 1	2.31, 1644, 29.2		352x288, 1	1644
5	176x144, 30	176x144, 30	0.97, 321, 25.6)	176x144, 30	321
6	176x144, 15	176x144, 15	0.90, 252, 18.8		176x144, 15	252
7	176x144, 10	176x144, 10	0.62, 208, 24.4		176x144,10	208
8	176x144, 5	176x144, 5	0.39, 135, 24.0		176x144, 5	135

Problem & Challenges

Problem:

How to select concrete QoS contracts at the ports of interacting components that are deployed in distributed nodes?

Challenges:

Find a solution that satisfies a number of different types of constraints.

Find a "better" solution. (A is a "better" solution than another solution B if A's utility is higher than that of B)

Find the solution efficiently.

QoS Contract Negotiation as a CSP

<u>Variables:</u> P_1 , P_2 , P_3 (QoS-Profiles to be used)

Domain: a set of QoS-Profiles are specified for each component

QoS properties: d₁, d₂, ..., d_k

<u>Constraints:</u> user's, conformance, and resource

User's QoS Requirement on $d_1 > P_1$.Offered. d_1 (User's constraint)

P₂.Required.d₁ => P₃.Offered.d₁ (conformance constraint)

 P_1 .Required.responseTime => P_2 .Offered.responseTime + delayInNetworkContainers

P₂.Resources.memory + P₃.Resources.memory ≤ Server.Resources.memory (resource constraint)

"Coarse-grained" and "fine-grained" Negotiation

- □ We classify properties as "coarse-grained" and "fine-grained"
 - → Simplifies negotiation
 - → Speeds up negotiation
- A coarse-grained property is associated with one or multiple fine-grained properties. For a certain value of the coarsegrained property, the fine-grained properties can possibly take different values depending on the allocated resource.

Examples:

"Coarse-grained"	"fine-grained"
video coding	frame rate, resolution
security goals	security mechanisms

Coarse-grained Negotiation

Fine-grained Negotiation

- Constraint Satisfaction Optimization Problem (CSOP) is used to model this phase.
- We use the standard branch and bound technique (B&B).
- For the B&B, we need to define:
 Variable & value selection policies
 Objective function, *f* Heuristic function, *h*

Example: Fine-grained Negotiation Algorithm (Single-Client – Single-Server)

Multiple-Clients Scenario - challenges

- New clients constantly send requests while existing clients leave
- Multiple clients may have varying requirements
- Additional parameters (e.g. contract duration, time of service delivery)
- Other negotiation goals

Multiple-Clients Scenario – Addressing the challenges

- Resource allocation strategy
 - Light-load
 - Over-load
 - Clients' request rate known

Classes of users		premium service class (resolution, frame rate in s ⁻⁺)	<i>normal</i> service class (resolution, frame rate in s^{-1})
	1.	352x288, 30	176x144, 30
& service class	2.	352x288, 25	176x144, 15
	3.	352x288, 20	176x144, 5

• Utility functions
$$U = \sum_{clients} \alpha_i U_s$$

Policy Constraints

e.g. How to favor clients of the same class when re-negotiating contracts?

Possible interaction between multiple clients and a server

Conclusions & Outlook

□ Conclusions:

- We have modeled QoS contract negotiation as a CSOP and have performed negotiation in multiplephases to get a good solution.
- The algorithm in a single-client single-server scenario is O(nd²) (n=#components, d=#QoS-Profiles)
- We generalized our approach to a multiple-clients scenario.

Outlook:

- Globally optimal solutions
 - Defining utility functions
 - Considering more parameters in a utility function

Thank You!