

Performance Assessment for e-Government Services An Experience Report

Yan (Jenny) Liu and Liming Zhu National ICT Australia Jenny.liu@nicta.com.au;liming.zhu@nicta.com.au

Ian Gorton Pacific Northwest National Laboratory

ian.gorton@pnl.gov

Australian Government

Department of Communications, Information Technology and the Arts

Australian Research Council

Scenario

- The first tim online tax lodgement service is integrated with medica cost system
- Assess performance of a new, hig profile egovernment services

Phase

Phases	Requirement	Design	Development	Testing	Deployment	Operation	Evolution
Models {			V	Vorkload Mod	els		
			F	Performance Performance M capacit	ce testing a Nodels y planni <u>ag</u> :	Ind PASA	
				carried out	: at indi分원 ent agencie	es Afòsich	
		Acc	uracy, Com	olexity and Co	ost of Modelin	ng Process	

e-PASA Approach : <u>e-government Performance A</u>ssessment for <u>Service A</u>rchitectures

Capacity Planning Process

Challenges

- Complexity of service architecture
- Complexity of the Web service scenarios
- Compositional performance assessment
 - Each Government agency was only able to test the various components of the new service in isolation but not the integrated end-to-end service

• Difficulties in performance measurement

- differences between the test environment and the production systems
- Operation of some parts of the system is outsourced
- discrepancies in measurement and estimation from different sources

Approach

- Complexity of service architecture
- Complexity of the Web service scenarios
- Compositional performance assessment
- Difficulties in performance measurement

- Determine the abstraction level
 - Workload characterization
- Layered Modeling
 approach
- Use approximation

Understand the Service Architecture

Understanding the Web Service Workload (1/2)

Understanding the Web Service Workload (2/2)

Characterize the Workload

- We need to characterize the workload that drives the runtime behavior of the system
- Understand workload pattern
 - Characterize navigational patterns within sessions
 - Characterize the rate at which different types of sessions start

Workload characterization is based on the transaction mix pattern (group into 5 classes of workload)

- Transactions that return MTS
- Transactions that only return messages without MTS
 Errors of user inputs, eg mismatched card numbers or other details

Devising Baseline Model

- 4 layers: sessions from the tax office, dedicated network, application servers, database servers and transaction processing systems
- a delay queue is introduced for proxy and load-balancing
- Multi classes of workload
- Mixed type of server (resource center) behaviors

Refining Baseline Model : Decomposition

Model Transformation and Solution

NICTA

Validate the Baseline Model

Throughput Under Different Workload Levels

What-if Analysis : transaction ratio for user input with errors doubled

Lessons Learnt

Prediction

- Limited model validation opportunities
- Work with coarse-grained data
- Work with incomplete measurement data
- Work with limited architecture visibility

Measurement

- A flexible test data generation tool is required
- A high degree of measurement and prediction integration is required
- A distributed unified measurement utility is required
- Time series data is essential for interpreting results

NICTA

Conclusion

- The performance evaluation results were later verified and inline with observations from the production system.
- Approximate modeling solutions with simplified assumptions can produce help setup baseline models.
- The success of this project leads to further collaboration with other government agencies
- Ongoing research is under the NICTA eGovernment Project

http://www.nicta.com.au/research/projects/egov

Thank You and Questions

Backup Slides

Basic Modeling Notations

se Queueing Network as the analytical performance model

cheduling discipline is processor sharing (PS)

pplying IVA algorithms Server (resource)

Queue with load-dependent server. The average service time of the server depends on the load.

Waiting room

Queue with load-independent server. The average service time of the server does not depend on the load.

Delay server. The total time spent by a request at a delay server is the request's service time.