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* Technological advances & games showcasing
these advances continuously push the boundaries
what is to be expected of games.

* Resources required to produce games have
significantly increased.:

- 1992: $350.000 | 12 people | 6-12 months

— 2005: $3M - $10M | 25 people | 18 -24 months

* Price of computer games has remained the same.
Conclusion: you have to sell a lot of
games to make a profit.

AAA titles > 500.000 copies



In order to survive game developers must find a way to:
* Sellmore games

— Hits driven: top 99 games (only 3.3% of developed games)
accounts for 565% of all sales.

— Only 1in 7 games makes a profit.
* Find a way to lower costs & development time
— Reuse? COTS?

Benefits:

* Lower cost & development time

* Higher quality of COTS & game

* Advance technology at a faster rate.



History of COTS |

Use of COTS in games not new:
* Game engines (ID: doom / unreal) have been

around for a decade.
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* Recently: lots of COTS entering the market
specialized in less well understood game areas
(physics / Al).
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7 =Six areas of reuse |

* Network ~ server - client communication
* Graphics
— Rendering ~ pixelpushing
— Modeling ~ managing game objects
— Animation ~ creating realistic movement
— Texturing & effects ~ bump mapping
* Gui ~ building interfaces
* Al ~ creating the illusion of intelligence
* Physics ~ adhere to newton’s law
* Sound ~ music/sound

Not part of the game but of the “content pipeline”
*TOOLS



{ Future of COTS?

specialization

more cots == good

# of components

Four problem areas worth further investigating:
1. COTS vs framework

2. Complexity & SA design

3. The “emerging” architecture

4. Buy or build?



# available COTS increases -> integration
becomes a problem.

physics Graphics

Will game COTS end up like J2EE or .NET?
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Complexity & SA design
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Complexity mainly due to increase in #components,
but also a spaghetti of dependencies making your game
Less flexible & expandable.



Causes of complexity

Internal data representation
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The “emerging” architecture

* Ad hoc design is commonplace.
* An architecture “emerges”
* Architecture may not be optimal for your game

* Connectors play a fundamental role in Achieving
Quality

* Needs to be further explored in the domain of
games.



Buy or Build? |

* How do you know the COTS provides what you
need?

* Requires deep knowledge of COTS.

* Game development is explorative with frequently
changing requirements.

* Avoid end up rewriting most of the COTS’
functionality.

* Guidelines for component selection?
* |Increase flexibility while still meeting perf. Req.?






