
Developing games with COTS

Eelke Folmer
Assistant Professor CS&E
University of Nevada, Reno
http://research.eelke.com

A solution to escalating costs
        and expanding deadlines?



Games have evolved

Pong (1970)Gears of War (2006)Super mario 1987



Problems with game dev

 Technological advances & games showcasing
these advances continuously push the boundaries
what is to be expected of games.

 Resources required to produce games have
significantly increased:
– 1992: $350.000 | 12 people | 6-12 months
– 2005: $3M - $10M | 25 people | 18 -24 months

 Price of computer games has remained the same.

Game development costs

Conclusion: you have to sell a lot of 
games to make a profit. 
            AAA titles > 500.000 copies



The business of gamesDilemma

In order to survive game developers must find a way to:
 Sell more games

– Hits driven: top 99 games (only 3.3% of developed games)
accounts for 55% of all sales.

– Only 1 in 7 games makes a profit.
 Find a way to lower costs & development time

– Reuse? COTS?

Benefits:
 Lower cost & development time
 Higher quality of COTS & game
 Advance technology at a faster rate.



History of COTS

Game engine

Use of COTS in games not new:
 Game engines (ID: doom / unreal) have been

around for a decade.

 Recently: lots of COTS entering the market
specialized in less well understood game areas
(physics / AI).

network sound

Rendering

physics pathfinding animation



Reference architectureReference Architecture

Provide a RA to: 
Discuss commonality between games.
Sketch out areas of reuse. 

specific

general

Gui framework Graphics Sound AI Physics network

ui Game logic Game assets

Game interface

Domain specific

infrastructure

Platform software
Wii/Xbox/playstation

networkinput graphics audio

Hardware abstraction



Six Areas of reuse

 Network ~ server - client communication
 Graphics

– Rendering ~ pixelpushing
– Modeling ~ managing game objects
– Animation ~ creating realistic movement
– Texturing & effects ~ bump mapping

 Gui ~ building interfaces
 AI ~ creating the illusion of intelligence
 Physics ~ adhere to newton’s law
 Sound ~ music/sound

Six areas of reuse7

Not part of the game but of the “content pipeline”
TOOLS



Future of COTS?

more cots == good

Four problem areas worth further investigating:
1. COTS vs framework
2. Complexity & SA design
3. The “emerging” architecture
4. Buy or build?

specialization

# of components



COTS vs FrameworksCOTS vs Frameworks

# available COTS increases ->  integration
becomes a problem.

Will game COTS end up like J2EE or .NET?

Graphicsphysics

-Less flexibility

-integration 
problems

-no integration 
problems

-More control

cots frameworks



ComplexityComplexity & SA design

Game in 1994

Massive multiplayer game 2005 

Complexity mainly due to increase in #components, 
but also a spaghetti of dependencies making your game
Less flexible & expandable. 



Causes for complexityCauses of complexity

Game

Draw()
MakeSound()
Move()

Draw()
MakeSound()
Move()

Draw()
MakeSound()
Move()

Sound Physics

changeupdateupdate

Graphics

Graphics

PhysicsSound

Better???

Internal data representation

Object centric view



The Emerging architecture

 Ad hoc design is commonplace.
 An architecture “emerges”
 Architecture may not be optimal for your game

 Connectors play a fundamental role in Achieving
Quality

 Needs to be further explored in the domain of
games.

The “emerging” architecture



Buy or Build?Buy or Build?

 How do you know the COTS provides what you
need?

 Requires deep knowledge of COTS.
 Game development is explorative with frequently

changing requirements.
 Avoid end up rewriting most of the COTS’

functionality.

 Guidelines for component selection?
 Increase flexibility while still meeting perf. Req.?



Questions?


