Developing games with COTS |

A solution to escalating costs
and expanding deadlines?

Eelke Folmer

Assistant Professor CS&E
University of Nevada, Reno
http://research.eelke.com

* Technological advances & games showcasing
these advances continuously push the boundaries
what is to be expected of games.

* Resources required to produce games have
significantly increased.:

- 1992: $350.000 | 12 people | 6-12 months

— 2005: $3M - $10M | 25 people | 18 -24 months

* Price of computer games has remained the same.
Conclusion: you have to sell a lot of
games to make a profit.

AAA titles > 500.000 copies

In order to survive game developers must find a way to:
* Sellmore games

— Hits driven: top 99 games (only 3.3% of developed games)
accounts for 565% of all sales.

— Only 1in 7 games makes a profit.
* Find a way to lower costs & development time
— Reuse? COTS?

Benefits:

* Lower cost & development time

* Higher quality of COTS & game

* Advance technology at a faster rate.

History of COTS |

Use of COTS in games not new:
* Game engines (ID: doom / unreal) have been

around for a decade.

= N

* Recently: lots of COTS entering the market
specialized in less well understood game areas
(physics / Al).

physics pathfinding animation

Provide

Gamk if4 g

Gui framework

L/

ommaonalitv.petw

e -

JU C
Graphics

Game logic

Game assets

n games.

Physics

network

Domain specific

infrastructure

Platform software

|

Wii/Xbox/playstation

specific

general

7 =Six areas of reuse |

* Network ~ server - client communication
* Graphics
— Rendering ~ pixelpushing
— Modeling ~ managing game objects
— Animation ~ creating realistic movement
— Texturing & effects ~ bump mapping
* Gui ~ building interfaces
* Al ~ creating the illusion of intelligence
* Physics ~ adhere to newton’s law
* Sound ~ music/sound

Not part of the game but of the “content pipeline”
*TOOLS

{ Future of COTS?

specialization

more cots == good

of components

Four problem areas worth further investigating:
1. COTS vs framework

2. Complexity & SA design

3. The “emerging” architecture

4. Buy or build?

available COTS increases -> integration
becomes a problem.

physics Graphics

Will game COTS end up like J2EE or .NET?

X

cots frameworks

Complexity & SA design

server | shared | client
server main/misc client main/misc
sound /i I
conects to Connects to
nearly everything patch/update . network network nearty everything
= server ' Low-level prediction/ hserver
and shared | correction and shared
streamin, : ; i
¢ g main/misc. simulation network | cottson detections -
file 1I/0 scene management ntessection H clfent gameptay
| | code
:
regstration simulation/ '
fast 2D graphics - - P i "
server | sound
gamepay code : manager
° } eneity :
: tayer :
- - sound:
4 | I ot
et |
stare spatial partition -
! d Gquery. |
streaming
| 10 rendering:
perststent : I {REWS low-ievel
stare static | 30 andmation !
e folio [skeletat only) O e
| scene managemment
. 1
database anatysts |]
and recovery ;arnvlﬂ;ﬂ script evalustor i
| 1
s
(aften not seripted world construction qeometry and game master tooks physically-basec dient software
=) content and layout antmation audio/animation update publshng
players creation rparters

Massive multiplayer game 2005

Complexity mainly due to increase in #components,
but also a spaghetti of dependencies making your game
Less flexible & expandable.

Causes of complexity

Internal data representation

Graphics Sound Physics
update update change Sound <+— Physics

Object centric view

Graphics

Game

\
@ -
L

Draw()
MakeSound ()
Move ()

‘ Better???
A g

>
v Q

Draw()
MakeSound ()
Move ()

Draw()
MakeSound ()
Move ()

The “emerging” architecture

* Ad hoc design is commonplace.
* An architecture “emerges”
* Architecture may not be optimal for your game

* Connectors play a fundamental role in Achieving
Quality

* Needs to be further explored in the domain of
games.

Buy or Build? |

* How do you know the COTS provides what you
need?

* Requires deep knowledge of COTS.

* Game development is explorative with frequently
changing requirements.

* Avoid end up rewriting most of the COTS’
functionality.

* Guidelines for component selection?
* |Increase flexibility while still meeting perf. Req.?

