
Dynamic Adaptation of
Aspect-Oriented Components

Cristóbal Costa, Jennifer Pérez, Jose A. Carsí

10th International ACM SIGSOFT Symposium on
Component-Based Software Engineering (CBSE’07)
July 9-11, 2007 – Tufts University, Medford, Massachusetts, USA

Outline

Motivation

Aspect-oriented components

Case Study

Evolving component types

Evolving component instances

Conclusions and further work

10th Int. Symp. on Component-Based Software Engineering (CBSE’07) 3/209th July, 2007

Complex software systems undergo changes

Component replacement has disadvantages
– It is not appropriate when minor changes are done
– Component state is lost
– The overall system is affected by the replacement

process
– To restart a Component increases the performance

cost
– Some systems cannot stop their activity

Can we design components capable from being
adapted at run-time?

Motivation

state

10th Int. Symp. on Component-Based Software Engineering (CBSE’07) 4/209th July, 2007

Several works have addressed dynamic
adaptation
– Are developed for a specific platform
– Require a centralized evolution infrastructure
– Only consider the adaptation of component instances

… component types?

We outline how to build a platform-independent
infrastructure that allow each component type to be
adapted dynamically

A1
System at run-time

A3

Motivation

A’1

A2

A4

A3A2

A4

A

Evolution
Manager

A’

Outline

Motivation

Aspect-oriented components

Case Study

Evolving component types

Evolving component instances

Conclusions and further work

10th Int. Symp. on Component-Based Software Engineering (CBSE’07) 6/209th July, 2007

Aspect-oriented components
We use aspect-oriented components to benefit
from its flexibility and maintenance

Aspects modularize crosscutting-concerns:
– One crosscutting-concern can be modularized in one or

more aspects
– Reduction of Complexity: reduction of tangled code

COORDINATIONFUNCTIONAL SAFETY FUNCTIONAL2

portport Component1 portport Component2

portComponent3

port Component4

portport Connector1

portport Connector2

10th Int. Symp. on Component-Based Software Engineering (CBSE’07) 7/209th July, 2007

Aspect-oriented components

PRISMA
– An approach to develop technology-independent,

aspect-oriented software architectures
– Components, aspects, and weavings are independent

of each other
– Follows the Model-Driven Development paradigm

• PRISMA Software Architectures can be
automatically compiled for a technological
platform through code generation techniques

Architectural
Element

Aspects

Weavings

Ports

Outline

Motivation

Aspect-oriented components

Case Study

Evolving component types

Evolving component instances

Conclusions and further work

10th Int. Symp. on Component-Based Software Engineering (CBSE’07) 9/209th July, 2007

Case Study

TeachMover
– A robotic arm whose

movements are
controlled by different
joints

– A joint is modelled as a
PRISMA component

– Each joint is controlled
at runtime by an
instance of a Joint
component type

wrist

tool

elbow

shoulder
r

base

PRISMA
component

type

PRISMA
component
instances

Saf
Joint

Fun

instance_of

Base

instance_of

Elbow instance_of

Shoulder

10th Int. Symp. on Component-Based Software Engineering (CBSE’07) 10/209th July, 2007

Joint
Fun

UpdSafety

Saf2

Updater

instance_of

Case Study
After deployment
– A new requirement emerges
– Safety aspect needs to be upgraded to “Safety2”

Dynamic Adaptation is needed
– Performed by a new component
– UpdSafety component instance is introduced in the

running system to trigger the adaptation process

PRISMA
component

types

PRISMA
component
instances

Saf

instance_of

Base

instance_of

Elbow instance_of

Shoulder

Saf2
System at run-time

Outline

Motivation

Aspect-oriented components

Case Study

Evolving component types

Evolving component instances

Conclusions and further work

10th Int. Symp. on Component-Based Software Engineering (CBSE’07) 12/209th July, 2007

Each component type:
– Is a factory of component instances
– Provides a set of evolution services to change its structure
– Is responsible of updating its running component instances

Evolution services modify the main parts of a component
– To dynamically evolve a component, its

structural parts have to be identified first

– Evolution services depend
on the component
metamodel

– Two kinds of evolution services:
• Introspection services - provide information

GetAspects(), GetWeavings(), GetPorts(), …
• Type Evolution services - type modification

AddAspect(), RemoveAspect(), AddWeaving(), …

Evolving component types

Component

Aspect

Port

Weav ing

1..*

has1 0..*

weaves1

1..*
imports

1

10th Int. Symp. on Component-Based Software Engineering (CBSE’07) 13/209th July, 2007

Evolving component types

Component type reflective structure
– Component types and component instances are placed

in different abstraction layers

Joint

Create(. . .)
Destroy()

Add[Weaving | Port | Aspect]
Remove[Weaving | Port | Aspect]
Get [Weavings | Ports | Aspects]

Population

PRISMA
Component

Types

n

reflection_linksreification_link

UpdSafety

1. Evolution Services

3. Instances
population

propagate changes

Aspects: { “Fun”; “Saf” }
Ports: { OperPort: IMovement; }
Weavings: { “Saf” before “Fun”; }

2. Type
description

Joint.RemoveAspect(“Saf”)
Joint.AddAspect(“Saf2”)
Joint.RemoveAspect(“Saf”)
Joint.AddAspect(“Saf2”)

PRISMA
Component
Instances

Joint.RemoveAspect(“Saf”)

Aspects: { “Fun” }
Ports: { OperPort: IMovement; }
Weavings: {}manage

RemoveAspect(“Saf”);
RemoveWeavings(“Saf”)

Elbow

ShoulderBase

Outline

Motivation

Aspect-oriented components

Case Study

Evolving component types

Evolving component instances

Conclusions and further work

10th Int. Symp. on Component-Based Software Engineering (CBSE’07) 15/209th July, 2007

Evolving component instances

Component types do not directly
perform evolution changes inside
their instances
Each instance is responsible of
updating itself
– It is the only one who knows itself (its

state at run-time)
– It decides when to execute evolution

changes, ensuring that running
transactions are finished in a safe way

Runtime evolution consists of
modifying only those parts affected
by the change, while the others are
unaware of these changes

Saf
Joint

Fun

Elbow

Evolution
changes

10th Int. Symp. on Component-Based Software Engineering (CBSE’07) 16/209th July, 2007

Providing Runtime Evolution
1. Maximize the independence among the internal parts
2. Identify Evolution Dependencies

• PRISMA: EvDep[{aspect port},{aspect weaving}]
• Aspect service: MoveJoint(int coord)
• Weaving: MoveJoint(int coord) after SafePos(int coord)
• Port: IMovement (which contains the MoveJoint service)

3. Identify how to react in response to these changes
• Aspect additions
• Aspect removals
• Aspect replacements

This knowledge is introduced in the
EvolutionPlanner aspect

Evolving component instances

No evolution dependency

To remove related ports and
weavings too

To propagate changes to weavings or ports, if
the dependency points have been affected

10th Int. Symp. on Component-Based Software Engineering (CBSE’07) 17/209th July, 2007

Fun Saf

Base

Component instance adaptation structure

Reflection link receives the changes to be applied
EvolutionPlanner coordinates the actions to be
performed by the Actuator and Sensor aspects
Actuator and Sensor aspects
– Perform platform-dependent evolution operations
– Sensor supervises what is going on

(parts are ready to be changed? parts are busy?)
• getAspectState(), getWeavingState(), …

– Actuator performs changes on the running instance
• addAspect(), stopAspect(), startAspect(), …

Evol.
Plan Sen Act

Evolving component instances

2. Evolution Planner

1. Reflection link port

3. Sensor

4. Actuator

Port

Aspect

Weaving

Outline

Motivation

Aspect-oriented components

Case Study

Evolving component types

Evolving component instances

Conclusions and further work

10th Int. Symp. on Component-Based Software Engineering (CBSE’07) 19/209th July, 2007

Conclusions

Dynamic Adaptation of Components
– The whole system is unaware of the adaptation process
– The evolved component does not need to be restarted
– The state of the evolved component is not lost

A generic infrastructure has been described
– Adaptation of both component types and component

instances
– Autonomous point of view

• Each component type manages its instances
• Each component instance decides when to adapt itself

– Use of aspects to benefit from:
• To change the component behaviour by

adding/removing aspects
• Better maintenance of the

evolution code Fun Saf Evol.
Plan Sen Act

10th Int. Symp. on Component-Based Software Engineering (CBSE’07) 20/209th July, 2007

Further work

Should a component publish its internal structure
to other software entities?
– Use of component authentication techniques

How can we avoid undesirable changes on the
structure?
– Constraints for component type evolution

• What kind of evolution services can be executed?

Is the use of finer evolution services convenient?
– Dynamic evolution of services and attributes
– High performance costs

10th International ACM SIGSOFT Symposium on
Component-Based Software Engineering (CBSE’07)

July 9-11, 2007 – Tufts University, Medford, Massachusetts, USA

Questions

Cristóbal Costa

Information Systems and Software Engineering Research Group
Department of Information Systems and Computation
Polytechnic University of Valencia
Spain

Home page: http://issi.dsic.upv.es/~ccosta
Email: ccosta@dsic.upv.es
The PRISMA project: http://prisma.dsic.upv.es

Thank you for your attention

	Dynamic Adaptation of �Aspect-Oriented Components
	Outline
	Motivation
	Aspect-oriented components
	Case Study
	Evolving component types
	Evolving component instances
	Conclusions
	Further work

