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Introduction
 Me: Tijs van der Storm
 Phd Student, project Deliver:

 Intelligent Knowledge Management for Software 
Delivery

 My focus: software configuration management
 This talk:

 Goal: efficient, lightweight, generic upgrading of 
component-based applications

 How: Binary change set composition (BCSC)



Perspective: continuous delivery

 Continuous...
 Integration
 Release
 Updates (this talk)

 Setting: heterogeneous component-based 
applications

 Assumption: automation is key
 Steps towards self-updating software



Preliminaries

 Components: 
 source trees with explicit dependencies

 Application:
 A closure of a component

 Application release:
 Building each component
 Merging all binaries of the closure
 Delivering the result to users



Example component-based 
application

Toolbus

Toolbuslib

ATerm



Step 1: building components
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./configure 

--prefix=/install/toolbus

--with-toolbuslib=/install/toolbuslib
--with-aterm=/install/aterm

Then: make, make check, make install 

 Build in topological order:



Step 2: merging binaries
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Step 3: deliver to user
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Challenges for continuous updates

 Space inefficient
 Lot of duplication

 Time-consuming
 Manual deployment
 Bandwidth wasted

 Error-prone
 No automatic undo
 Traceability maintained manually



Binary Change Set Composition

 Solution:
 Store binary files differentially
 Use shallow copying to create closures
 Derive composite changesets 
 Update by transferring such changesets

 Implementation:
 Subversion



BCSC on top of Subversion

 BCSC maps to Subversion features:
 Component binaries are checked in
 Compositions created by branching
 First user deployment: checkout
 Upgrade/downgrade: workspace switch

 Additional benefits:
 Traceability & transactions
 Branch is constant space
 Switch proportional in size of changeset



Evaluation

 Drawbacks of update facilities
 Invasive (e.g. Nix, APT, RPM etc.)
 Source-based (e.g. Ports)
 Language dependent (e.g. JPloy)

 Binary Change Set Composition
 Complexity is at the vendor side
 Works with binary release
 Has no dependency on language or OS



Summary & Conclusions

 Binary change set composition for efficiently 
updating heterogeneous component-based 
applications
 Light-weight
 Efficient
 Safe

 Step towards self-updating software
 Future work: prototype -> production



Thank you

Questions?


