Binary Change Set Composition

Tijs van der Storm
Centrum voor Wiskunde en Infromatica
storm@cwi.nl

(om) e

Introduction

O Me: Tijs van der Storm
O Phd Student, project Deliver.

" Intelligent Knowledge Management for Software
Delivery

O My focus: software configuration management
O This talk:

" Goal: efficient, lightweight, generic upgrading of
component-based applications

" How: Binary change set composition (BCSC)

Perspective: continuous delivery

O Continuous...
" |ntegration
" Release
" Updates (this talk)

O Setting: heterogeneous component-based
applications

O Assumption: automation is key
O Steps towards self-updating software

Preliminaries

0 Components:

" source trees with explicit dependencies
O Application:

" A closure of a component
O Application release:

" Building each component

" Merging all binaries of the closure
" Delivering the result to users

Example component-based
application

Toolbus

Toolbuslib

ATerm

Step 1: building components

O Build in topological order:

.lconfigure

all

_——
_——
_——
—
——
—

--prefix=/install/tool bus

.-with-tool buslib=/install/tool bustiB
--with-aterm=/install/ateqm

.§~
—
—
—
e
" —

Then: make, make check, make installé

toqlbus
bin
toc@slib
B lib
include
aterm

B lib
include

Step 2: merging binaries

. Closures
toolbus (for each built
bin [bin
component)
toolbus [toolbus

~ libtoolbus.a

build | lib
include |
| libtoolbus.a
toolbus.h

 toolbuslib s
Component / - 1ib > atdiff

— . libATerm.so
aterm :
bin — include
| atdiff [toolbus.h
lib [
L : aterm.h
libATerm.so :
~ include

aterm.h

Step 3: deliver to user

1.0 Q
i Update? L 1.1
toolbus >
. atdiff bin ¢ .
[1jb [toolbus >
 libtoolbus.a | i Aatdiff ~ hin
_ libATerm.so lib | toolbus
— . I : atdiff
include libtoolbus.a :
| toolbus.h : libATerm.so[Ijb
=~ atermh include [libtoolbus.a
— toolbus.h _ libATerm.so
~ aterm.h ~ ipclude
| toolbus.h

— aterm.h

Challenges for continuous updates

O Space inefficient
" Lot of duplication
U Time-consuming
" Manual deployment
" Bandwidth wasted

O Error-prone
" No automatic undo
" Traceability maintained manually

Binary Change Set Composition

O Solution:
" Store binary files differentially
" Use shallow copying to create closures
" Derive composite changesets
" Update by transferring such changesets

O Implementation:
" Subversion

BCSC on top of Subversion

O BCSC maps to Subversion features:
" Component binaries are checked in
" Compositions created by branching
" First user deployment: checkout
" Upgrade/downgrade: workspace switch

O Additional benefits:
" Traceability & transactions
" Branchis constant space
" Switch proportional in size of changeset

Evaluation

O Drawbacks of update facilities
" Invasive (e.g. Nix, APT, RPM etc.)
" Source-based (e.g. Ports)
" Language dependent (e.g. JPloy)
O Binary Change Set Composition
" Complexity is at the vendor side

" Works with binary release
" Has no dependency on language or OS

Summary & Conclusions

O Binary change set composition for efficiently
updating heterogeneous component-based
applications
" Light-weight
" Efficient
= Safe

O Step towards self-updating software
O Future work: prototype -> production

Thank you

Questions?

