
Binary Change Set Composition

Tijs van der Storm
Centrum voor Wiskunde en Infromatica
storm@cwi.nl



Introduction
 Me: Tijs van der Storm
 Phd Student, project Deliver:

 Intelligent Knowledge Management for Software 
Delivery

 My focus: software configuration management
 This talk:

 Goal: efficient, lightweight, generic upgrading of 
component-based applications

 How: Binary change set composition (BCSC)



Perspective: continuous delivery

 Continuous...
 Integration
 Release
 Updates (this talk)

 Setting: heterogeneous component-based 
applications

 Assumption: automation is key
 Steps towards self-updating software



Preliminaries

 Components: 
 source trees with explicit dependencies

 Application:
 A closure of a component

 Application release:
 Building each component
 Merging all binaries of the closure
 Delivering the result to users



Example component-based 
application

Toolbus

Toolbuslib

ATerm



Step 1: building components

lib
include

lib
include
lib
include

toolbus
bin

/install

aterm

toolbuslib

./configure 

--prefix=/install/toolbus

--with-toolbuslib=/install/toolbuslib
--with-aterm=/install/aterm

Then: make, make check, make install 

 Build in topological order:



Step 2: merging binaries

lib

bin

include

lib
libtoolbus.a
libATerm.so

bin
toolbus
atdiff

include
toolbus.h
aterm.h

toolbus
bin

toolbus
toolbuslib

lib

include

aterm

libtoolbus.a

toolbus.h

libATerm.so

atdiff

aterm.h

Component
builds

Closures
(for each built 
component)



Step 3: deliver to user

lib
libtoolbus.a
libATerm.so

bin
toolbus
atdiff

include
toolbus.h
aterm.h

lib
libtoolbus.a
libATerm.so

bin
toolbus
atdiff

include
toolbus.h
aterm.h

lib
libtoolbus.a
libATerm.so

bin
toolbus
atdiff

include
toolbus.h
aterm.h

1.0

1.2

1.1Update?



Challenges for continuous updates

 Space inefficient
 Lot of duplication

 Time-consuming
 Manual deployment
 Bandwidth wasted

 Error-prone
 No automatic undo
 Traceability maintained manually



Binary Change Set Composition

 Solution:
 Store binary files differentially
 Use shallow copying to create closures
 Derive composite changesets 
 Update by transferring such changesets

 Implementation:
 Subversion



BCSC on top of Subversion

 BCSC maps to Subversion features:
 Component binaries are checked in
 Compositions created by branching
 First user deployment: checkout
 Upgrade/downgrade: workspace switch

 Additional benefits:
 Traceability & transactions
 Branch is constant space
 Switch proportional in size of changeset



Evaluation

 Drawbacks of update facilities
 Invasive (e.g. Nix, APT, RPM etc.)
 Source-based (e.g. Ports)
 Language dependent (e.g. JPloy)

 Binary Change Set Composition
 Complexity is at the vendor side
 Works with binary release
 Has no dependency on language or OS



Summary & Conclusions

 Binary change set composition for efficiently 
updating heterogeneous component-based 
applications
 Light-weight
 Efficient
 Safe

 Step towards self-updating software
 Future work: prototype -> production



Thank you

Questions?


