
Binary Change Set Composition

Tijs van der Storm
Centrum voor Wiskunde en Infromatica
storm@cwi.nl



Introduction
 Me: Tijs van der Storm
 Phd Student, project Deliver:

 Intelligent Knowledge Management for Software 
Delivery

 My focus: software configuration management
 This talk:

 Goal: efficient, lightweight, generic upgrading of 
component-based applications

 How: Binary change set composition (BCSC)



Perspective: continuous delivery

 Continuous...
 Integration
 Release
 Updates (this talk)

 Setting: heterogeneous component-based 
applications

 Assumption: automation is key
 Steps towards self-updating software



Preliminaries

 Components: 
 source trees with explicit dependencies

 Application:
 A closure of a component

 Application release:
 Building each component
 Merging all binaries of the closure
 Delivering the result to users



Example component-based 
application

Toolbus

Toolbuslib

ATerm



Step 1: building components

lib
include

lib
include
lib
include

toolbus
bin

/install

aterm

toolbuslib

./configure 

--prefix=/install/toolbus

--with-toolbuslib=/install/toolbuslib
--with-aterm=/install/aterm

Then: make, make check, make install 

 Build in topological order:



Step 2: merging binaries

lib

bin

include

lib
libtoolbus.a
libATerm.so

bin
toolbus
atdiff

include
toolbus.h
aterm.h

toolbus
bin

toolbus
toolbuslib

lib

include

aterm

libtoolbus.a

toolbus.h

libATerm.so

atdiff

aterm.h

Component
builds

Closures
(for each built 
component)



Step 3: deliver to user

lib
libtoolbus.a
libATerm.so

bin
toolbus
atdiff

include
toolbus.h
aterm.h

lib
libtoolbus.a
libATerm.so

bin
toolbus
atdiff

include
toolbus.h
aterm.h

lib
libtoolbus.a
libATerm.so

bin
toolbus
atdiff

include
toolbus.h
aterm.h

1.0

1.2

1.1Update?



Challenges for continuous updates

 Space inefficient
 Lot of duplication

 Time-consuming
 Manual deployment
 Bandwidth wasted

 Error-prone
 No automatic undo
 Traceability maintained manually



Binary Change Set Composition

 Solution:
 Store binary files differentially
 Use shallow copying to create closures
 Derive composite changesets 
 Update by transferring such changesets

 Implementation:
 Subversion



BCSC on top of Subversion

 BCSC maps to Subversion features:
 Component binaries are checked in
 Compositions created by branching
 First user deployment: checkout
 Upgrade/downgrade: workspace switch

 Additional benefits:
 Traceability & transactions
 Branch is constant space
 Switch proportional in size of changeset



Evaluation

 Drawbacks of update facilities
 Invasive (e.g. Nix, APT, RPM etc.)
 Source-based (e.g. Ports)
 Language dependent (e.g. JPloy)

 Binary Change Set Composition
 Complexity is at the vendor side
 Works with binary release
 Has no dependency on language or OS



Summary & Conclusions

 Binary change set composition for efficiently 
updating heterogeneous component-based 
applications
 Light-weight
 Efficient
 Safe

 Step towards self-updating software
 Future work: prototype -> production



Thank you

Questions?


