
Data Encapsulation in Software
Components

Kung-Kiu Lau and Faris M. Taweel

School of Computer Science

The University of Manchester, UK

� kung-kiu, faris.taweel � @cs.man.ac.uk

Overview

� Data encapsulation in OOP facilitates reuse (multiple instances)

� Is data encapsulation possible in CBSE?

� Need to combine data encapsulation with composition

CBSE2007 1

Current Software Component Models

Current component models fall into 2 categories:

� components are objects, e.g. EJB

� components are architectural units, e.g. ADLs

Objects
Architectural units

Yes

?

No
Yes

Components Data encapsulation Composition

CBSE2007 2

Composition with Data Encapsulation

Bank system description:

Bank Consortium BC2BC1

Bank Branch BB111 BB112 BB121 BB122 BB211 BB212 BB221 BB222

Bank B11 B12 B21 B22

Component-based bank system implementation:

Atomic
Component

Composite Components Bank Consortium Copy 1 Bank Consortium Copy 2

BB111 BB112 BB121 BB122BB21 BB22 BB211 BB212 BB221 BB222BB11 BB12Bank
branch

B1 B2 B11 B12 B21 B22

BC BC1 BC2
Bank copy

Bank
Bank Consortium

CBSE2007 3

Our Component Model

Two kinds of basic entities:

� computation unit

– provides a set of methods (or services)

– methods do not call methods in other computation units

(encapsulates computation)

� connector

– invocation connector

� connected to a computation unit, provides access to its methods

– composition connector

� defines and coordinates the control for a set of components
e.g. sequencer, selector, pipe

(encapsulates control)

CBSE2007 4

Our Component Model (Continued)

Two kinds of components:

� atomic component

– invocation connector + computation unit

� composite component

– composition connector + components (atomic or composite)

IGIF
GF

(a) Atomic component (b) Composite component

connector
Composition

FComputation
unit

Invocation
IFconnector

CBSE2007 5

Our Component Model:
Encapsulation of Control and Computation

Atomic and composite components:

IGIFFComputation
unit

Invocation
IFconnector

G

Encapsulation
(computation) (computation and control)

F

Encapsulation

(a) Atomic component (b) Composite component

connector
Composition Compositionality

Bank example:

Atomic
componentBB11 BB12

...balance(...)
withdraw(...)
deposit(...)Computation

unit

connector
Invocation

(a) Atomic (Bank branch BB11) (b) Composite (Bank B1)

B1 connector
Selector

Bank
IBB11

CBSE2007 6

Our Component Model: Encapsulation of Data

Data encapsulation in every (composite) component:
��� ���

IF

F

Encapsulation
(computation)

��� 	�	
�
 ���

��� �

��� ���

IGIF
GF

Encapsulation
(computation, control and data)

Compositionality

(a) Atomic component (b) Composite component data

Bank example:

��� ���

��� ��� ��� ������ ���
������

(a) Bank branch (b) Bank data

BB12BB11

IBB11

BB11

IBB11 IBB12

B1

CBSE2007 7

Our Component Model: Encapsulation

D
ID

E
IE

B
IB

A
IA

C
IC

F
IF IG

G

Control

Computation

Data

(‘Encapsulation: Enclosure in a capsule’, OED)

CBSE2007 8

Implementation of Data Encapsulation

� Centred on the constructor of a component

– copies of components at design time
(with place-holders for data)

– instances at run-time
(with initialised private data)

BB111 BB111 BB111 BB112

Instantiation Copying

T11T11
Data definitions
(design phase)

T11 T12T11’’T11’
Data instances
(runtime)

CBSE2007 9

Implementation of Data Encapsulation (Continued)
� Implementation in PL/SQL

– computation units are Oracle packages

– connectors are Oracle object types

– data operations use data connectors

Bank example:
Atomic

Component
Composite Components Bank Consortium Copy 1 Bank Consortium Copy 2

BB111 BB112 BB121 BB122BB21 BB22 BB211 BB212 BB221 BB222BB11 BB12Bank
branch

B1 B2 B11 B12 B21 B22

BC BC1 BC2
Bank copy

Bank
Bank Consortium

Implemented with

� 1 atomic component (bank branch)

� 1 composition connector (selector)

CBSE2007 10

Conclusion

� Component model with data encapsulation

� Combines encapsulation with composition

� Facilitates reuse:

– multiple copies at design time

(unlike OO classes, which cannot have copies)

– multiple instances at run-time
(like OO objects)

� Encapsulation at the level of component models, not at the level
of programming languages

CBSE2007 11

