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Emerging Business Landscape
Business-processes covering core and edge processes
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The Web and Business Software Architecture

Business software architecture is once again shifting radically
 SOA is evolving to Webware (SaaS); there have been other shifts
 There are several underlying reasons for this shift

– ubiquity, “flattening” (as in “flat world”), pervasive search, read-write web

 This shift impacts all major aspects of software
– process, data, UI
– development/programming models
– delivery, governance, lifecycle management, …

But does this impact the fundamental underlying problems?
 ability to change, extend and integrate systems
 better automation
 lower costs of deployment and development, …
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Global ↔ Local Delivery

Observations
 business processes being delivered from the “cloud”
 not limited to shareable/partitionable processes anymore

– HR, Finance, Photoshop

 it’s really about
– economics and dynamics of different delivery options, hardware and operations
– ease of consumption, ubiquitous access
– simpler and different revenue model(s), ad-financing
– ability to customize, and share

Questions
 what are the governing dynamics of

– local vs. remote access, change vs. share
– interoperability, bandwidth, availability, security, usability and support
– selecting the right partitioning (which processes to obtain from the “cloud”)
– IT landscape management
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Multi-Channel, Structured ↔ Unstructured

Observations
 applications used through various channels, each with special requirements

and sometimes unique opportunities
– mobile (very heterogeneous, semi-connectivity, location awareness, small form

factor)
– desktop (still heterogeneous, large form factor, rich feature set)
– voice

 gaps in information workers’ activities between structured and unstructured
docs

 breaks in the consumption and provisioning of information
 limits our own ability to effectively collaborate

Questions
 How do we better collaborate?
 How can applications better support transitioning between structured /

unstructured?
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Information Gap

Observations
 Continued lack of semantics
 Missing integration of knowledge of user and context
 Different types of data have different search platform needs

– Unstructured, structured, transactional, event, master

 Latency of real-time data
 Availability of great engines

Questions
 How do we best integrate a business user’s context into search?
 How can tagging or universal ontologies/vocabularies help?
 What has b2b taught us on this?
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Physical ↔ Digital

Observations
 RFID, sensor-networks, embedded systems enable more visibility.
 digital assets impact logistics, sales models and IP management.
 automated business processes that result from this are on the rise.
 need for real-world integration into business processes is already here.
 location awareness in cell phones and navigational systems as examples

Questions
 Is it about automation?  Or is it about more data? Or its relevance?
 What parts of the infrastructure need to change to support this better?

– analytics
– automation
– managing more data

 Does the nature of business activity change as a result of this?
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“Flat World”

Observations
 Disaggregation of the value chain

– over time, every activity that does not require presence will be done in a place that
is more efficient economically

 Virtualization of enterprises
– processes span organization / IT boundaries
– visibility required transparently through these boundaries (think, e.g., GRC)

 Several governing factors
– need for presence
– infrastructure (network, communication latency, availability, …)
– economics
– automation vs. better delivery

Questions
 How will architectures support disaggregated value chains best?
 How different is multi-tenancy from per-customer visibility?
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Adoption

Observations
 The modern web creates a massive “flattening” of information.
 Product adoption often lags information availability.
 This lag is much bigger in the business world than for consumers.
 Businesses need much smaller adoption and change cycles.
 Software services from different sources exhibit different lifecycles.
 But there are many aspects to this:

– migration, training, integration, …

Questions
 How can we rethink change and flexibility in large scale software systems?

Visibility?
 What are the major elements of the adoption lifecycle?
 What are the limiting factors?  Knowledge transfer?
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“Moore’s Law” of Platform Complexity

Platform complexity “doubles” every few years.
Languages and Paradigms hardly keep up.

50’s 60’s 70’s 80’s 90’s 2000’s

Platforms Languages,
Paradigms

hard-wired

assembly

3GLs, 4GLs

OO

Modeling,
DSLs, Rules
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The Burdens of Re-Use

Observations
 The way we program is largely unchanged

– some new thinking around AJAX
– only early signs of web-specific programming languages and paradigms for easy development

and change

 We are still largely creating new layers of abstraction:
– each with their programming model, flexibility and purpose
– benefits in isolation and separation of concerns, but
– repurposing components in the stack into which they are assembled
– overall performance and complexity of entire stack negatively affected

 I believe this choice is an artificial one.  We can have both flexibility and optimization.

Questions
 What is a programming model that

– maximizes development efficiency?
– builds in reliability and performance benefits?
– enables both benefits of abstraction and cost and cross-layer performance optimization?
– can be used by a wide variety of developer types?
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What do Programming Models have to do with it?

What is a programming model (PM) anyway?
 set of languages, frameworks/libraries, tools and guidelines

PMs should be used to cut complexity back to the essential
complexity of the stack as it’s being used or what it’s been
designed for.
 avoids unnecessary dependencies on specific elements of the stack
 leads to a greater flexibility in the evolution and optimization of the stack
 improves separation of concerns
 raises development efficiency
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Improved Architecture Agility by Abstraction

migration effort with
specification provided

at abstract, portable levels

Portal
(e.g., Sharepoint)

reporting
(e.g., SAP BI)

persistence
(e.g., Hibernate)

runtime
(e.g., Java)
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complete
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sketches

complete, deployed
system

replace platform components 2&1

migration effort with
specification provided
in platform-specific
ways

stack of platformcomponents and languages
(examples only)

Enabling / cost reduction for
 architecture evolution
 optimization across layers
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Improved Development Efficiency

Take path of least effort
 Detailing at low abstraction level causes extra effort and errors.
 Example: write an object-oriented business application in assembler

Stack of Platforms and Languages
amount of specification content
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Demystifying Approaches to New PMs

“We could embed a DSL into a suitable host language.”
 Are tooling concerns addressed appropriately?
 How do you restrict the host language infrastructure to use only your DSL?

“Let’s build a new scripting language, and we’ll be doing fine.”
 But what distinguishes scripting in the first place?

“Ok, so we’re going to use a model-driven approach.”
 But what’s the difference between an executable model and a piece of code?
 And where is a graphical syntax more appropriate than an ASCII text?

Let’s take a closer look...
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Scripting ↔ Non-Scripting

Scripting is about
 eliminating the compilation step
 using flexible type systems to make developer more productive

Blurring boundaries
 short compilation cycles for compiled languages
 JIT compilation (Java byte code  native; JSP to Java to byte code; ...)
 type system qualities (static vs. dynamic vs. duck typing; inference)
 memory management and bounds checking in compiled languages
 lifecycle management requirements for scripting solutions

Core values
 easy to learn
 making change easy
 good integration capabilities
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Modeling ↔ Coding

There are many commonalities in what we call programming
language and modeling language. Both
 have abstract and concrete syntax
 can be of rather declarative or imperative nature
 can use different types of representation

(though we usually think of programming language artifacts as ASCII strings)
 strive for adequate abstractions, concern separation and aspect localization

Many issues of classical “programming” also exist for “modeling”
 physical partitioning of artifacts
 dependencies
 teamwork aspects (change management, versioning, ...)

What’s the difference between
 a code generator / model transformer and a compiler?
 a piece of C++ code and a sequence chart?
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What’s “Modeling?”

Herbert Stachowiak, Allgemeine Modelltheorie:
 Isomorphic representation

– A model represents some thing.
– Model and thing are connected by an isomorphism.

 Abstraction
– The model suppresses irrelevant detail and focuses on important aspects.

 Pragmatics
– The model is created for a purpose.

Examples of Models
 Crash test dummy
 London subway map
 UML model
 C# source code

Some parts get a lot more challenging in the “modeling” world...
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Scaling to many Users

 >12000 developers at SAP
 some of our customers have larger teams than we do
 many different roles and skill sets
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Scaling to many Languages / Metamodels

Different languages / language modules
 maintained by different groups
 with different release schedules

Yet, many links exist between them.

Individual users may cross
boundaries
 avoid redundancies
 homogenize

Language may evolve
independently
 allow for migration of artifacts

UI

<<metamodel>>

data

<<metamodel>>

enterprise_search

<<metamodel>>

security

<<metamodel>>

flow

<<metamodel>>

rules

<<metamodel>>

expressions

<<metamodel>>

events

<<metamodel>>

configuration

<<metamodel>>

model_management

<<metamodel>>

landscape

<<metamodel>>

document_management

<<metamodel>>
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The Model Diff/Merge Problem

Logically atomic changes may affect multiple conflict/merge units,
e.g.,
 cross-partition link addition/removal that is stored on both ends,
 delete propagation along composition hierarchy.
 Needs to be considered during merge operations.

Structural differences between abstract and concrete syntax

How to display differences and merge conflicts of abstract model in
concrete syntax (and in which)?
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Understood for Text Syntaxes
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Display the conflict in the tree, or in a
form, and in which one?

Waiting Paying

OutOfService

pay

deliver

serviced

pay

error
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Lifecycle Issues of Multiple (Graphical) Views

Changing a model through one view may update another
 views may be versioned and access-controlled artifacts
 extensions to models may be provided in multiple layers of the system

Changes in graphical views may be for viewing only...
 toggle expanded/collapsed setting on a diagram entity
 change the zoom level and panning position

...but should not necessitate checkout/versioning operation
 user may not have the permissions required
 creation of a new version not justified by minor changes of settings

Research is only starting to understand
 e.g., Udo Kelter et al., SiDiff, http://pi.informatik.uni-siegen.de/sidiff/
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migration effort with
specification provided

at abstract, portable levels

Portal
(e.g., Sharepoint)

reporting
(e.g., SAP BI)

persistence
(e.g., Hibernate)

runtime
(e.g., Java)
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replace platform components 2&1

migration effort with
specification provided
in platform-specific
ways

Summary

Challenging / changing IT landscapes, most importantly
 “flat-world” process execution and consumption, SaaS
 multiple usage contexts, multiple access points, multiple form factors
 need for ubiquitous and simple search and information access
 more visibility over the physical world
 much smaller adoption, consumption and change cycles

Significant optimization potential in our stacks
 tune components towards specific usage scenarios and consolidate

Next-generation programming models
 extend development to broader user-base (incl. non-programmers)
 allow for cross-stack optimizations
 but “just modeling” isn’t enough and raises new challenges
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Thank You
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