
Challenges in Software

Architecture
Programming models in a changing landscape

Dr. Axel Uhl
Chief Development Architect
SAP, Office of the CTO

© SAP AG 2007, Challenges in Architecture / Axel Uhl / 2

Agenda

Next-Generation Programming Models

Challenging and Changing IT Landscapes

Significant Optimization Potential in Our Stacks

Summary, Q&A

© SAP AG 2007, Challenges in Architecture / Axel Uhl / 3

Emerging Business Landscape
Business-processes covering core and edge processes

© SAP AG 2007, Challenges in Architecture / Axel Uhl / 4

The Web and Business Software Architecture

Business software architecture is once again shifting radically
 SOA is evolving to Webware (SaaS); there have been other shifts
 There are several underlying reasons for this shift

– ubiquity, “flattening” (as in “flat world”), pervasive search, read-write web

 This shift impacts all major aspects of software
– process, data, UI
– development/programming models
– delivery, governance, lifecycle management, …

But does this impact the fundamental underlying problems?
 ability to change, extend and integrate systems
 better automation
 lower costs of deployment and development, …

© SAP AG 2007, Challenges in Architecture / Axel Uhl / 5

Global ↔ Local Delivery

Observations
 business processes being delivered from the “cloud”
 not limited to shareable/partitionable processes anymore

– HR, Finance, Photoshop

 it’s really about
– economics and dynamics of different delivery options, hardware and operations
– ease of consumption, ubiquitous access
– simpler and different revenue model(s), ad-financing
– ability to customize, and share

Questions
 what are the governing dynamics of

– local vs. remote access, change vs. share
– interoperability, bandwidth, availability, security, usability and support
– selecting the right partitioning (which processes to obtain from the “cloud”)
– IT landscape management

© SAP AG 2007, Challenges in Architecture / Axel Uhl / 6

Multi-Channel, Structured ↔ Unstructured

Observations
 applications used through various channels, each with special requirements

and sometimes unique opportunities
– mobile (very heterogeneous, semi-connectivity, location awareness, small form

factor)
– desktop (still heterogeneous, large form factor, rich feature set)
– voice

 gaps in information workers’ activities between structured and unstructured
docs

 breaks in the consumption and provisioning of information
 limits our own ability to effectively collaborate

Questions
 How do we better collaborate?
 How can applications better support transitioning between structured /

unstructured?

© SAP AG 2007, Challenges in Architecture / Axel Uhl / 7

Information Gap

Observations
 Continued lack of semantics
 Missing integration of knowledge of user and context
 Different types of data have different search platform needs

– Unstructured, structured, transactional, event, master

 Latency of real-time data
 Availability of great engines

Questions
 How do we best integrate a business user’s context into search?
 How can tagging or universal ontologies/vocabularies help?
 What has b2b taught us on this?

© SAP AG 2007, Challenges in Architecture / Axel Uhl / 8

Physical ↔ Digital

Observations
 RFID, sensor-networks, embedded systems enable more visibility.
 digital assets impact logistics, sales models and IP management.
 automated business processes that result from this are on the rise.
 need for real-world integration into business processes is already here.
 location awareness in cell phones and navigational systems as examples

Questions
 Is it about automation? Or is it about more data? Or its relevance?
 What parts of the infrastructure need to change to support this better?

– analytics
– automation
– managing more data

 Does the nature of business activity change as a result of this?

© SAP AG 2007, Challenges in Architecture / Axel Uhl / 9

“Flat World”

Observations
 Disaggregation of the value chain

– over time, every activity that does not require presence will be done in a place that
is more efficient economically

 Virtualization of enterprises
– processes span organization / IT boundaries
– visibility required transparently through these boundaries (think, e.g., GRC)

 Several governing factors
– need for presence
– infrastructure (network, communication latency, availability, …)
– economics
– automation vs. better delivery

Questions
 How will architectures support disaggregated value chains best?
 How different is multi-tenancy from per-customer visibility?

© SAP AG 2007, Challenges in Architecture / Axel Uhl / 10

Adoption

Observations
 The modern web creates a massive “flattening” of information.
 Product adoption often lags information availability.
 This lag is much bigger in the business world than for consumers.
 Businesses need much smaller adoption and change cycles.
 Software services from different sources exhibit different lifecycles.
 But there are many aspects to this:

– migration, training, integration, …

Questions
 How can we rethink change and flexibility in large scale software systems?

Visibility?
 What are the major elements of the adoption lifecycle?
 What are the limiting factors? Knowledge transfer?

© SAP AG 2007, Challenges in Architecture / Axel Uhl / 11

Agenda

Next-Generation Programming Models

Challenging and Changing IT Landscapes

Significant Optimization Potential in Our Stacks

Summary, Q&A

© SAP AG 2007, Challenges in Architecture / Axel Uhl / 12

“Moore’s Law” of Platform Complexity

Platform complexity “doubles” every few years.
Languages and Paradigms hardly keep up.

50’s 60’s 70’s 80’s 90’s 2000’s

Platforms Languages,
Paradigms

hard-wired

assembly

3GLs, 4GLs

OO

Modeling,
DSLs, Rules

© SAP AG 2007, Challenges in Architecture / Axel Uhl / 13

The Burdens of Re-Use

Observations
 The way we program is largely unchanged

– some new thinking around AJAX
– only early signs of web-specific programming languages and paradigms for easy development

and change

 We are still largely creating new layers of abstraction:
– each with their programming model, flexibility and purpose
– benefits in isolation and separation of concerns, but
– repurposing components in the stack into which they are assembled
– overall performance and complexity of entire stack negatively affected

 I believe this choice is an artificial one. We can have both flexibility and optimization.

Questions
 What is a programming model that

– maximizes development efficiency?
– builds in reliability and performance benefits?
– enables both benefits of abstraction and cost and cross-layer performance optimization?
– can be used by a wide variety of developer types?

© SAP AG 2007, Challenges in Architecture / Axel Uhl / 14

What do Programming Models have to do with it?

What is a programming model (PM) anyway?
 set of languages, frameworks/libraries, tools and guidelines

PMs should be used to cut complexity back to the essential
complexity of the stack as it’s being used or what it’s been
designed for.
 avoids unnecessary dependencies on specific elements of the stack
 leads to a greater flexibility in the evolution and optimization of the stack
 improves separation of concerns
 raises development efficiency

© SAP AG 2007, Challenges in Architecture / Axel Uhl / 15

Improved Architecture Agility by Abstraction

migration effort with
specification provided

at abstract, portable levels

Portal
(e.g., Sharepoint)

reporting
(e.g., SAP BI)

persistence
(e.g., Hibernate)

runtime
(e.g., Java)

am
ou

nt
 o

f s
pe

ci
fic

at
io

n
co

nt
en

t

complete
specification

sketches

complete, deployed
system

replace platform components 2&1

migration effort with
specification provided
in platform-specific
ways

stack of platformcomponents and languages
(examples only)

Enabling / cost reduction for
 architecture evolution
 optimization across layers

© SAP AG 2007, Challenges in Architecture / Axel Uhl / 16

Improved Development Efficiency

Take path of least effort
 Detailing at low abstraction level causes extra effort and errors.
 Example: write an object-oriented business application in assembler

Stack of Platforms and Languages
amount of specification content

© SAP AG 2007, Challenges in Architecture / Axel Uhl / 17

Agenda

Next-Generation Programming Models

Challenging and Changing IT Landscapes

Significant Optimization Potential in Our Stacks

Summary, Q&A

© SAP AG 2007, Challenges in Architecture / Axel Uhl / 18

Demystifying Approaches to New PMs

“We could embed a DSL into a suitable host language.”
 Are tooling concerns addressed appropriately?
 How do you restrict the host language infrastructure to use only your DSL?

“Let’s build a new scripting language, and we’ll be doing fine.”
 But what distinguishes scripting in the first place?

“Ok, so we’re going to use a model-driven approach.”
 But what’s the difference between an executable model and a piece of code?
 And where is a graphical syntax more appropriate than an ASCII text?

Let’s take a closer look...

© SAP AG 2007, Challenges in Architecture / Axel Uhl / 19

Scripting ↔ Non-Scripting

Scripting is about
 eliminating the compilation step
 using flexible type systems to make developer more productive

Blurring boundaries
 short compilation cycles for compiled languages
 JIT compilation (Java byte code  native; JSP to Java to byte code; ...)
 type system qualities (static vs. dynamic vs. duck typing; inference)
 memory management and bounds checking in compiled languages
 lifecycle management requirements for scripting solutions

Core values
 easy to learn
 making change easy
 good integration capabilities

© SAP AG 2007, Challenges in Architecture / Axel Uhl / 20

Modeling ↔ Coding

There are many commonalities in what we call programming
language and modeling language. Both
 have abstract and concrete syntax
 can be of rather declarative or imperative nature
 can use different types of representation

(though we usually think of programming language artifacts as ASCII strings)
 strive for adequate abstractions, concern separation and aspect localization

Many issues of classical “programming” also exist for “modeling”
 physical partitioning of artifacts
 dependencies
 teamwork aspects (change management, versioning, ...)

What’s the difference between
 a code generator / model transformer and a compiler?
 a piece of C++ code and a sequence chart?

© SAP AG 2007, Challenges in Architecture / Axel Uhl / 21

What’s “Modeling?”

Herbert Stachowiak, Allgemeine Modelltheorie:
 Isomorphic representation

– A model represents some thing.
– Model and thing are connected by an isomorphism.

 Abstraction
– The model suppresses irrelevant detail and focuses on important aspects.

 Pragmatics
– The model is created for a purpose.

Examples of Models
 Crash test dummy
 London subway map
 UML model
 C# source code

Some parts get a lot more challenging in the “modeling” world...

© SAP AG 2007, Challenges in Architecture / Axel Uhl / 22

Scaling to many Users

 >12000 developers at SAP
 some of our customers have larger teams than we do
 many different roles and skill sets

© SAP AG 2007, Challenges in Architecture / Axel Uhl / 23

Scaling to many Languages / Metamodels

Different languages / language modules
 maintained by different groups
 with different release schedules

Yet, many links exist between them.

Individual users may cross
boundaries
 avoid redundancies
 homogenize

Language may evolve
independently
 allow for migration of artifacts

UI

<<metamodel>>

data

<<metamodel>>

enterprise_search

<<metamodel>>

security

<<metamodel>>

flow

<<metamodel>>

rules

<<metamodel>>

expressions

<<metamodel>>

events

<<metamodel>>

configuration

<<metamodel>>

model_management

<<metamodel>>

landscape

<<metamodel>>

document_management

<<metamodel>>

© SAP AG 2007, Challenges in Architecture / Axel Uhl / 24

The Model Diff/Merge Problem

Logically atomic changes may affect multiple conflict/merge units,
e.g.,
 cross-partition link addition/removal that is stored on both ends,
 delete propagation along composition hierarchy.
 Needs to be considered during merge operations.

Structural differences between abstract and concrete syntax

How to display differences and merge conflicts of abstract model in
concrete syntax (and in which)?

© SAP AG 2007, Challenges in Architecture / Axel Uhl / 25

Understood for Text Syntaxes

© SAP AG 2007, Challenges in Architecture / Axel Uhl / 26

Display the conflict in the tree, or in a
form, and in which one?

Waiting Paying

OutOfService

pay

deliver

serviced

pay

error

© SAP AG 2007, Challenges in Architecture / Axel Uhl / 27

Lifecycle Issues of Multiple (Graphical) Views

Changing a model through one view may update another
 views may be versioned and access-controlled artifacts
 extensions to models may be provided in multiple layers of the system

Changes in graphical views may be for viewing only...
 toggle expanded/collapsed setting on a diagram entity
 change the zoom level and panning position

...but should not necessitate checkout/versioning operation
 user may not have the permissions required
 creation of a new version not justified by minor changes of settings

Research is only starting to understand
 e.g., Udo Kelter et al., SiDiff, http://pi.informatik.uni-siegen.de/sidiff/

© SAP AG 2007, Challenges in Architecture / Axel Uhl / 28

Agenda

Next-Generation Programming Models

Challenging and Changing IT Landscapes

Significant Optimization Potential in Our Stacks

Summary, Q&A

© SAP AG 2007, Challenges in Architecture / Axel Uhl / 29

migration effort with
specification provided

at abstract, portable levels

Portal
(e.g., Sharepoint)

reporting
(e.g., SAP BI)

persistence
(e.g., Hibernate)

runtime
(e.g., Java)

am
ou

nt
 o

f s
pe

ci
fic

at
io

n
co

nt
en

t

complete
specification

sketches

replace platform components 2&1

migration effort with
specification provided
in platform-specific
ways

Summary

Challenging / changing IT landscapes, most importantly
 “flat-world” process execution and consumption, SaaS
 multiple usage contexts, multiple access points, multiple form factors
 need for ubiquitous and simple search and information access
 more visibility over the physical world
 much smaller adoption, consumption and change cycles

Significant optimization potential in our stacks
 tune components towards specific usage scenarios and consolidate

Next-generation programming models
 extend development to broader user-base (incl. non-programmers)
 allow for cross-stack optimizations
 but “just modeling” isn’t enough and raises new challenges

© SAP AG 2007, Challenges in Architecture / Axel Uhl / 30

Thank You

© SAP AG 2007, Challenges in Architecture / Axel Uhl / 31

Copyright 2007 SAP AG
All Rights Reserved

No part of this publication may be reproduced or transmitted in any form or for any purpose without the express permission of SAP AG. The information contained herein may be
changed without prior notice.

Some software products marketed by SAP AG and its distributors contain proprietary software components of other software vendors.

Microsoft, Windows, Outlook, and PowerPoint are registered trademarks of Microsoft Corporation.

IBM, DB2, DB2 Universal Database, OS/2, Parallel Sysplex, MVS/ESA, AIX, S/390, AS/400, OS/390, OS/400, iSeries, pSeries, xSeries, zSeries, z/OS, AFP, Intelligent Miner,
WebSphere, Netfinity, Tivoli, Informix, i5/OS, POWER, POWER5, OpenPower and PowerPC are trademarks or registered trademarks of IBM Corporation.

Adobe, the Adobe logo, Acrobat, PostScript, and Reader are either trademarks or registered trademarks of Adobe Systems Incorporated in the United States and/or other countries.

Oracle is a registered trademark of Oracle Corporation.

UNIX, X/Open, OSF/1, and Motif are registered trademarks of the Open Group.

Citrix, ICA, Program Neighborhood, MetaFrame, WinFrame, VideoFrame, and MultiWin are trademarks or registered trademarks of Citrix Systems, Inc.

HTML, XML, XHTML and W3C are trademarks or registered trademarks of W3C®, World Wide Web Consortium, Massachusetts Institute of Technology.

Java is a registered trademark of Sun Microsystems, Inc.

JavaScript is a registered trademark of Sun Microsystems, Inc., used under license for technology invented and implemented by Netscape.

MaxDB is a trademark of MySQL AB, Sweden.

SAP, R/3, mySAP, mySAP.com, xApps, xApp, SAP NetWeaver, and other SAP products and services mentioned herein as well as their respective logos are trademarks or
registered trademarks of SAP AG in Germany and in several other countries all over the world. All other product and service names mentioned are the trademarks of their
respective companies. Data contained in this document serves informational purposes only. National product specifications may vary.

The information in this document is proprietary to SAP. No part of this document may be reproduced, copied, or transmitted in any form or for any purpose without the express prior
written permission of SAP AG.

This document is a preliminary version and not subject to your license agreement or any other agreement with SAP. This document contains only intended strategies,
developments, and functionalities of the SAP® product and is not intended to be binding upon SAP to any particular course of business, product strategy, and/or development.
Please note that this document is subject to change and may be changed by SAP at any time without notice.

SAP assumes no responsibility for errors or omissions in this document. SAP does not warrant the accuracy or completeness of the information, text, graphics, links, or other items
contained within this material. This document is provided without a warranty of any kind, either express or implied, including but not limited to the implied warranties of
merchantability, fitness for a particular purpose, or non-infringement.

SAP shall have no liability for damages of any kind including without limitation direct, special, indirect, or consequential damages that may result from the use of these materials.
This limitation shall not apply in cases of intent or gross negligence.

The statutory liability for personal injury and defective products is not affected. SAP has no control over the information that you may access through the use of hot links contained
in these materials and does not endorse your use of third-party Web pages nor provide any warranty whatsoever relating to third-party Web pages.

