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ABSTRACT
One of the major problems in building large-scale enterprise
systems is anticipating the performance of the eventual solution
before it has been built. This problem is especially germane to
modern Internet-based e-business applications, where failure to
provide high performance and scalability can lead to application
and business failure. The fundamental software engineering
problem is compounded by many factors, including application
diversity, architectural trade-offs and options, COTS component
integration requirements, and differences in performance of
various software and hardware infrastructures. This paper
investigates the feasibility of providing a novel and practical
solution to this problem. The approach as demonstrated, constructs
useful models that act as predictors of the performance for
component-based systems hosted by middleware infrastructures
such as CORBA, COM+ and J2EE.

1. INTRODUCTION
The software industry has realized that robust, reliable and scalable
technology is needed to support their enterprise-scale, e-business
systems. Middleware and component technologies [1], the
plumbing of many Internet systems, have emerged in various
guises as a base infrastructure for running advanced e-business
systems. The predominant ones in use today are CORBA from the
Object Management Group, COM+ from Microsoft and J2EE from
Sun Microsystems.

This paper explains the inherent difficulties in predicting early in a
project lifecycle the performance of applications built using COTS
middleware components. In order to narrow the scope of the
problem, the focus is on the large class of 4-tier enterprise
applications that typically comprise:

1. Web browser based clients
2. A Web Server executing presentation logic
3. An Application Server executing business logic
4. One or more databases and back-end applications that

provide data storage
We present a novel approach to this problem of performance
prediction. The approach comprises 3 elements:

1. a structured approach to gathering empirical performance
results on COTS middleware infrastructures

2. a reasoning framework for understanding architectural
trade-offs and relationships to technology features

3. a set of predictive mathematical models that describe the
generic behavior of applications using COTS
middleware technology

The empirical results established through testing in step 1 are used
to feed into COTS product specific parameter values for the
models. This then enables us to make predictions based on
observed and measured product-specific behaviors. In this paper,
we will focus on elements 1 and 3 only. We will also conclude by
describing the current status of the project and the outstanding
problems that remain to be solved.

2. PERFORMANCE OF COMPONENT-
BASED SYSTEMS
The discussion that follows is aimed at component based software
infrastructure technologies such as COM+ and J2EE. Very
basically, these component architectures provide run-time
environments that provide application level components with the
many services they require to operate in a distributed system.

These services typically include object location, security,
transaction management, integration services, database connection
pooling, and so on. The overall aim is to free application level
components of the need to manipulate these services directly in
their code, hence making them simpler to build and maintain. The
component run-time environments, typically calledcontainers,
provide these services to the application components they host.
Individual components are able to request specific levels of service
from a container (eg no security, encryption, etc) declaratively,
using some form of configuration information that the container
reads.

There is an important distinction to be made about the type of
components that make up applications built using middleware. As
we’ve already pointed out, COTS middleware components form
the infrastructure, orplumbingof distributed applications. In effect
this infrastructure provides a distributed environment for
deploying application level componentsthat carry out business-
specific processing.

This distinction between infrastructure level components and
application level components is crucial. Application level
components rely on the COTS middleware-supplied infrastructure
components to manage their lifecycle and execution, and to
provide them off-the-shelf services such as transactions and
security. Hence, an application level component cannot execute
outside of a suitable COTS middleware environment. The two are
extremely tightly coupled.
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Figure 1 Typical 4-tier Enterprise Application Architecture

An important implication of this is that the behavior of application
components is completely dependent upon the behavior of the
infrastructure components. The two cannot be divorced in any
meaningful way. The entire application’s behavior is the
combination of the behavior of the application – the business logic
- and infrastructure components as depicted in Figure 2.

All this has profound implications upon component assessment,
certification and software engineering. No matter how high the
quality of the application components, the COTS middleware
infrastructure becomes the most crucial component in most
systems. If the COTS middleware is naively architected or
implemented, has subtle errors in some services, or is simply
inefficient and lacking in features, then the application components
inevitably pay the price.

Figure 2 Anatomy of a COTS Middleware Application

Interestingly, open standard COTS middleware infrastructures
such as CORBA and J2EE actually exacerbate this problem. With
CORBA and J2EE technologies, many vendors sell their own
versions of the middleware infrastructure. These are all
implemented differently, and hence behave and perform differently
[2]. This means, for example, a J2EE-based application
component’s performance is dependent upon the actual J2EE
product that it runs on. The same application component may
perform very differently indeed on two different J2EE

implementations [2], depending on the quality and features of the
product. This of course is not the case with single-source
component technologies such as Microsoft’s COM+.

This tight coupling of application and infrastructure invalidates
traditional approaches to application performance measurement,
and makes prediction of the effects of various architectural trade-
offs complex. It is no longer possible to execute the application
components independently and measure their performance. Nor is
it possible to inspect the code in an attempt to analyze
performance, as the infrastructure source code is rarely available.1

This last point is absolutely crucial. Approaches such as that
exemplified in [3] are naïve. They assume an idealized
implementation of a component infrastructure technology such as
Enterprise Java Beans (EJB), and base their performance models
on this. Unfortunately, no such idealized implementation exists.
CSIRO’s MTE project clearly demonstrates the performance
differences between different EJB products.

In fact, a trivial test case can demonstrate why the queuing model
proposed in [3] not valid for a real technology. Figure 3 illustrates
the results of executing identical application components on six
different COTS components infrastructures based on the J2EE
open standard. All the tests are executed on the same physical
hardware and software environment, and the products are
configured to achieve optimal performance on the test hardware
available.

The graph shows the application throughput achieved in terms of
transactions per second (tps) for client loads varying between 100
and 1000. The performance differences are significant, both in the
peak throughput achieved foreach COTS technology, and their
ability to scale to handle increasing client loads. These differences
become more even more significant as the same test case is scaled
out to run on more application server machines in an attempt to
improve application throughput [2].

1 Even if it were, the complexity of the infrastructure code would
make this infeasible.



It therefore should be quite apparent that any performance
prediction approach that does not take in to account differences
between actual products is doomed to failure.
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Figure 3 J2EE Performance Comparisons

Given all these issues, software engineers in practice must resort to
experimentally discovering application configurations that provide
acceptable levels of performance. This can be a time-consuming
and expensive process, as it requires detailed measurements to be
recorded from test runs across a number of different
configurations. As COTS middleware technologies are highly
configurable, often with tens of inter-related configuration options,
this is rarely a trivial performance tuning exercise.

3. PERFORMANCE PREDICTION
METHODOLOGY
As depicted in Figure 4, the performance prediction methodology
has two aims.

The first is to create a COTS product-specific performance profile
that describes how the various components of the middleware
product affect performance. This profile is aimed at analyzing the
behavior and performance of a middleware product in a generic
manner that is not related to any particular application
requirements. Using this profile, it is possible to use a set of
generic mathematical models to predict the behavior of the
middleware infrastructure under various configurations.

The second aim is to construct a reasoning framework for
understanding architectural trade-offs and their relationships to
specific technology features. This reasoning framework provides
the architect with insights into how the different quality attributes
interact with each other, and it helps the architect reason about the
effects of their architectural decisions.

The third and final aim is to create an application-specific
configuration that takes in to account the behavioral characteristics
of the application at hand. The application architect describes the
application behavior in terms of client loads, business logic
complexity, transaction mix, database requirements, and so on. By
inputting these parameters in to the generic performance models, it
should be possible to predict the application configuration settings
required to achieve high performance.

The remainder of this paper focuses on the first and third step of
this methodology, and the design of a set of test cases that can be
used to characterize the performance of a COTS middleware
technology. In particular, we use a J2EE/EJB application server
technology as an example.
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Figure 4 Performance Prediction Methodology Outline

Central to the J2EE specification is the Enterprise JavaBeans
framework. EJBs are server-side components, written in Java, that
typically execute the application business logic in an N-tier
application. An EJB container is required to execute EJB
components. The container provides EJBs with a set of ready to
use services including security, transactions and object persistence.
Importantly, EJBs call on these services declaratively by specifying
the level of service they require in an associated XML file known
as a deployment descriptor. This means that EJBs do not need to
contain explicit code to handle infrastructure issues such as
transactions and security.
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Figure 5 J2EE/EJB Test Case Design

An EJB container also provides internal mechanisms for managing
the concurrent execution of multiple EJBs in an efficient manner.
EJBs themselves are not allowed to explicitly manage concurrency,
and hence must rely on the container for efficient threading and
resource usage.

3.1 A Bottom-up Testing Approach
In order to examine the infrastructure component quantitatively,
and independently from the application behaviour, we use a simple
test application, known as theidentity application. The identity
application has several important characteristics that make it an
good test application for examining infrastructure quality. The
identity application has the following characteristics:



• There is only one table in the relational database

• The table contains 2 fields only: the unique identifier (or key)
and a value field that contains a number

• A single application component (e.g. an EJBean) with a read
and write method in its interface

• The read(Key ClientID) method simply reads in the number
in the value field, given the identifier

• The write(Key ClientID) method increments the value field
given the identifier

• Each client using the server-side identity application business
logic has a unique id

Using the identity application, we can thus remove any
unpredictability in timing due to database contention and
application and or business logic complexities. In the absence of
database bottlenecks, we can observe the COTS middleware
components behaviour and quality. The insight into the
infrastructure component assists with building the prediction
model.

Initially, tests aim to exercise the basic infrastructure of the COTS
components using the identity application. Additional service
components such as transaction and or security service
components can then be introduced in to the tests. The multi-
staged testing approach enables us to observe the differences
between a basic system (with no additional services) and another
that utilizes an additional service component.

Parameter Types Sample Test Parameters

External variable
stimulus

Client request load, transaction types,
transaction request frequency

Configurable System
Parameter

Thread pool size, database connection
pool size, applicationcache size,

Measurable/Observable
parameters

Throughput (transactions per sec)

Client response time, service time

Deducible System
Property

Optimal thread pool size for achieving
maximum throughput, optimal database
connection pool size for achieving
maximum throughput, optimal
application componentcache size for
achieving minimal response time

Table 1 Parameter Types and Sample Test Cases

4. CASE STUDY
In order to demonstrate the viability of this approach, this section
describes a cost model that estimates the overhead of contention in
a generic server component interacting with a database.

The presentation of this case study follows the performance
prediction process:

1. Construct a mathematical model that captures generic
behavioral properties, and uses coefficients to abstract
away the constant environmental factors that holds true
for a given test environment

2. The parameter values for the models are ‘discovered’
through empirical testing of specific COTS technologies

3. Once the parameter values have been populated, and
coefficients representing environmental factors have
been determined, the model is used in a ‘predictive’
fashion, to help the system architect in making important
design decisions early in the project lifecycle

4.1 Test Setup and Model
For simplicity, we consider only one server, which creates a set of
threads to serve requests concurrently. Figure 6 illustrates the
process of handling concurrent requests in the server.
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Figure 6 Handling Concurrent Requests

As shown in Figure 6, the overall contention overhead for a server
component basically results from three sources. First, contention
occurs when all concurrent requests compete for service by the
server component. This contention includes the network
bandwidth and underlying transport mechanisms, typically socket
ports in TCP/IP-based protocols. Second, contention arises when
all accepted requests compete for a thread to execute the server
component’s business logic. Finally, contention results from
concurrent access to the database by the concurrent server threads.
`This involves database connection handling and locks on data in
the database.

If we represent the number of clients as x and the number of server
threads as y, we obtain the following contention cost model:

cy
y

bx
axC ++= (1)

Where:
• C is the overall contention overhead in time;
• a is the network contention overhead ratio per

concurrent client;
• b is the contention overhead ratio per concurrent client

for service from a single server thread;
• c is the contention overhead ratio per server thread to

access database;
Note that in this contention prediction model, x is the external
variable stimulus, y is the configurable system parameter,
coefficients of x and y, i.e. a, b and c are abstractions of the
environmental variables for a given test environment. To make the
contention overhead independent from testing execution times and
transaction types, we define the contention overheadC as the
average response time for all transactions, i.e. C=T/N,whereT is
the execution time of a test andN is the total number of
transactions.
Parameter Types Test Parameters



External variable stimulus Number of clients

Configurable System Parameter System thread pool size

Measurable/Observable
parameters

Throughput, response time

Deducible System Property Contention overhead ratio per
server thread to access database

Table 2 Test Case Parameters for Deducing System Contention

The contention experienced for a server component is of course
application and hardware dependent. Many factors may contribute
to or reduce the overheads of contention, such as the transaction
types, machine capacity, network traffic, and so on. This makes it
impractical or impossible to build a ‘perfectly precise’ cost model
that takes all factors into account. While our cost model focuses on
two contention factors, namely the number of concurrent requests
and the number of server threads (x andy), all the other factors are
absorbed in the model parameters (a, bandc). With our contention
cost model (1), it is consequently possible to derive the optimal
number of server threads. That is:

c

bx
y =* (2)

where x is the given number of clients; b and c are the model
parameters reflecting the characters of a specific application and
platform.

This result can be further explained as follows:

• The more concurrent clients result in higher contention
at all points. The degree of the concurrency of a server
component is proportional to the square root of the
number of concurrent clients.

• Increased contention on the database in practise restricts
a server component from using an unbounded number of
concurrent database connections.

4.2 Empirical Testing and Parameter
For a given test application using a commercially available
application server technology, a number of tests were run. Each
fixed the number of server threads, e.g. y = 1, 2, 4 and so on. Then,
we ran a varied number of test clients for different tests runs
against the server component. Each client executes 430
transactions in the test [2]. From the test results, the contention
overheads were derived from the execution times measured at the
client-side by using C=T/N, where T is the execution time in
milliseconds andN = 430. In this way, we obtained the first
measure of contention overheads as shown in Table 3.

From Table 3, we can observe that while the contention overheads
increase as the number of concurrent clients increase, the
contention overheads change in a parabola shape as the number of
server threads increase monotonically. This verifies the assumption
that too high a degree of concurrency in a server component will
degrade the overall performance. Therefore, an optimal degree of
concurrency for this application exists, and the engineering
problem is to discover this and achieve high performance.

Num. of Num. of Concurrent Clients

Server Threads 100 200 400 800

1 1251 2447 5216 10405

2 841 1605 3096 6385

4 730 1443 2966 5910

8 724 1427 2945 5913

16 737 1435 2894 5773

32 760 1574 2974 5814

64 782 1579 3158 6178

128 813 1629 3389 6849

Table 3 Contention overheads in milliseconds

The statistical software package,Splus[5], was then used to fit our
non-linear cost model. Based on the experimental results in Table
3, we obtained the following parameters for cost model (1) above,
for the test application implemented in the application server
technology used in the tests:

a = 6.65 msec / client

b = 5.42 msec · thread / client

c = 5.24 msec / thread

Then the cost model with the three parameters was used to estimate
contention overheads, which are compared with the experimental
results in Figure 7. The graphs show the cost model represents the
pattern and trend of the contention overhead and thus can be used
to predict the degrees of the concurrency in the server components.

4.3 Deriving Optimal Concurrency
Based on the above parameters, we can derive the optimal number
of server threads by applying (2). A set of theoretical optimal
numbers of server threads for different number of concurrent
clients is listed in Table 4. As shown in Figure 7, basically, the
theoretical optimal numbers of server threads falls in the area
where the best performance could be achieved.

Num of
Clients (x)

Optimal Num. of Server Threads
(y*)

100 10
200 14
400 20
800 29

Table 4 Theoretical optimal numbers of server threads

5. CONCLUSIONS
The approach explained in this paper explicitly recognizes the
inherent problems of component based systems, and provides a
possible solution based on empirical testing and mathematical
modeling. The models describe generic behaviors of application
server components running on COTS middleware technologies.
The parameter values in the models are necessarily different for
each different product, as all products have unique performance
and behavioral characteristics. These values must therefore be
discovered through empirical testing. To this end, a set of test
cases are defined and executed for each different COTS
middleware product. The results of these tests make it possible to
solve the models for each product, so that performance prediction
for a given product becomes possible.
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This approach has been validated in two case studies, one of which
is described in the paper. The execution of the complete set of test
cases to characterize two different J2EE products is close to
completion, and the results are being used to populate a number of
generic models.

In the medium term, there remain a number of complex problems to
solve. Incorporating application-specific behavior in to the equation
in a practical manner is an open problem. This is necessary to make
the approach useable in wide-scale engineering. It also remains to
be seen how far the results from the empirical testing can be
generalized across different hardware and software platforms. This
is important, as it profoundly affects the cost of executing the test
cases. It may be that, if a huge number of test cases need to be
executed on different platforms, this approach may be economically
impractical in an environment of rapid change and evolution.
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