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ABSTRACT
Component developers have limited knowledge of how their
components will be aggregated into applications and they can not
control the deployment and execution environment. This makes
the development of predictable component-based software a
difficult proposition. Adding services to a software container can
help remedy this problem. This paper discusses how commercial
container technology can be augmented to support more
predictable behavior of component compositions. Our approach
consists of augmenting an open source Enterprise JavaBeans
(EJB) container and server with assertion capabilities. We
discuss how these new capabilities can be used at load and
initialization time to verify that a composition meets some policy
constraints and at runtime to verify that the composition is
maintaining critical properties.
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1. INTRODUCTION
A high confidence system is one that behaves in a well-

understood and predictable fashion and where the consequences
of failure are high. It should withstand attacks as well as naturally
occurring hazards, and must not cause or contribute to accidents
or unacceptable losses. High Confidence Software (HCS) is
needed if high confidence systems are going to meet their
requirements. This means the development of safe, reliable,
dependable, secure, and survivable computing and
communications software.

There are fairly well established techniques and processes for
developing HCS. Techniques include Design by Contract, N-
version programming, watchdog timers, and recovery blocks.
Process-related standards for HCS include DO-178-B, and MIL-
STD-882-C. When applied to systems with high confidence
requirements (e.g., weapon release and aircraft control software),
these techniques and processes have resulted in successes.
However, these techniques and processes are generally expensive
to employ, and are not tailored to efficiently support component-
based software development.

For the purpose of this paper, we will define acomponentas
a reusable aggregation of functionality with a well-defined
interface and acontaineras software that supports the execution
of components. Assuming current practices, components and
containers are generally developed by different individuals or

organizations. Component developers are experienced in, for
example, a business domain while container developers are
experienced in system level programming. This separation of
concerns allows developers to utilize their strengths and to reuse
the strengths of others, i.e., allowing component developers to
inexpensively utilize services that they would otherwise have to
develop.

In the Java 2 Platform Enterprise Edition (J2EE)
framework, container-provided services include: transactions,
security, connection pooling, object passivation, and others. The
goal of J2EE is to support the quick and efficient development of
component–based e-business applications.

While container services offered by J2EE map well to the e-
business problem space, they do not offer the services appropriate
for building HCS. However, in the same way J2EE decreases the
cost of e-commerce software, augmenting containers to support
HCS techniques may decrease the cost of HCS development. For
example, supporting these techniques in the container makes the
application easier to modify and maintain. That is, it is easier to
modify a missile release component if the missile release
interlocks are implemented, verified, and asserted separately, in
the container.

One approach to adding HCS mechanisms could be to design
a new container technology. Another approach could be to
augment an existing container technology. We chose to
demonstrate our approach by augmenting an Enterprise
JavaBeans (EJB) container that is part of the open source
JBoss project1. Our reasoning was that basing our work on an
already established container technology would ease adoption.
Also, using an established container technology might support the
deployment of applications with mixed levels of assurance.
Finally, using a preexisting container technology would allow us
to concentrate on the novel aspects of our work and reuse much of
the existing container design and implementation.

2. ASSURANCE THROUGH ASSERTIONS
When creating a software system from components the

composer needs to consider the relationship among the
components. Usually this relationship is one of client and service
provider. However, as correct behavior becomes more critical, the
other properties among the components may become important.
For example, the execution of a critical service might only be
acceptable if the other components in the system are in a valid
state. Or service execution might only be acceptable if all of the

1 Seewww.jboss.orgor http://sourceforge.net/projects/jboss/



deployed components offering the same service have arrived at
the same result. Because these properties are established over the
set of deployed components they cannot be addressed in the
individual components, but must be collectively addressed at
composition, deployment, or at runtime.

In their typical software engineering usage, assertions
provide a means for specifying expectations about a module’s
implementation. Assertions are typically a Boolean-valued
expression that, if evaluated to true, have no effect, and if
evaluated to false, result in an error being reported. For HCS,
verifying that assertions are met at runtime provides additional
confidence that the implementation is consistent with the intent of
the developer, composer, and deployer.

Meyer introduced Design by Contract (DBC) as a means to
specify constraints on the design and use of a module. The
contract applies to both the implementation of a module and the
use of a module [3]. DBC emphasizes that it is important not only
to determine that the components comprising the system are
implemented in a manner in accordance with their own
development expectations, but also that they are being used in a
manner in accordance with the constraints laid out by the module
developer. When we investigated the application of DBC
techniques to CBS we concluded that improvements to the
techniques and mechanisms might make container-based
composition easier.

In a software composition setting, it is essential to ensure that
the composition of a set of components is realized inaccordance
with the composer’s expectations, and that such composition does
not violate the expectations of the individual components. Since
the components of the system may have been purchased (rather
than developed), the composer may not have the ability to modify
the individual components. To better support assurance in
composed systems, we need mechanisms for providing assertions
on the compositions of components.

Assertions can also be used to describe and enforce
properties in addition to the DBC properties discussed above. For
example, many of the design techniques that are used to develop
high confidence software can, at least in part, be implemented by
using assertion like mechanisms. Three examples of high
confidence design techniques are:
• Software interlocks – verifying all preconditions for critical

operations are correct. Uses assertions to describe the
preconditions of critical operations.

• Watchdog timers – verifying at predetermined intervals that a
component set is in a consistent state. Uses assertions to
describe the state invariants for the components in an
application.

• Software firewalls – verifying that in the presence of an
error, clients will receive a predetermined notification. Uses
assertions to describe the postconditions of operations.

Consider a scenario in which we wish to execute a particular
function of a critical component based upon the status of a set of
dependent components. Lets assume that the critical component
controls the launch of a surface to air missile (Fire) and the
dependent components determine the nationality of the target
(Identify Friend or Foe), if the target is closing on allied forces
(Threat), and the status of the missile launcher is (Launcher
Ready). Figure 1 represents the hypothetical missile firing system.
Let’s say one of the simpler missile release interlocks states that

all software components must be in an error free state. That is,∑
IFF (State OK) AND∑Threat (State OK) AND Launcher (State
OK) == TRUE.
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Figure 1: Example of a runtime assertion that verifies all
Identify Friend or Foe components, all Threat components,

and the Launcher Ready component are in a valid state before
the Fire component will execute.

Since this interlock is dependent on the components
deployed in the system it cannot be implemented without knowing
the deployment configuration. But this causes component –
deployment configuration coupling, something that should be
avoided. A solution to this issue is to have the container verify the
interlock. As shown in the figure the fire component container
asserts that all components are in a valid state. This decouples the
interlock from the missile fire component and allows verification
of the interlock to occur at the container level. This means that a
fire component replacement will observe this interlock, which will
minimize re-verification cost, improve the rate at which new
systems can be deployed, and support runtime replacement of
components.

3. HCS CONTAINERS
For our experimental prototype we chose EJB as our

component and container technology for two reasons. First, it is
widely used in industry making the adoption of our augmentations
easier. Second, it is based on two “design patterns” that fit our
goals. These “design patterns” are:
• Indirection – the EJB container mediates interaction with

EJB components.



• Declarative programming – the behavior of the EJB can be
changed without source code modifications (The JBoss
implementation also supports declarative programming for
the server and EJB containers).

These “design patterns” are the basis of our research into
HCS containers. That is, we use container level indirection to
verify high confidence properties before and after a method is
executed. At deployment time we use declarative programming to
adapt which properties are verified. Deployment time adaptations
can be used to adapt components to varying configurations or
deployment environments. In addition, the JBoss implementation
allows the insertion of monitors into the EJB server. These
monitors are peers of the EJB containers. They have access to all
containers and EJBs loaded in the server.

We are investigating two types of EJB server and container
enhancements: mediators, which control communications among
components and between a client and server; and monitors, which
evaluate assertions outside the context of component
communication.

Figure 2 is a high level view of the JBoss Server
Architecture. JBoss server is based on a Java™ Management
Extensions (JMX) framework. The server's EJB containers are
built up dynamically and loaded into the JMX framework. The
EJB containers are based on another plug-in framework, the JBoss
Container Framework. This means there are essentially an
unlimited number of different container types that can be defined
and loaded into the server.
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Figure 2: Overview of the JBoss architecture

In the JBoss Container Framework, plug-ins implement
specific interfaces and are selected by specifying them in an
XML-based descriptor file. Included in the plug-in set is the
Interceptor interface. Interceptors are instantiated and chained
together into a linked-list by the container factory. The last
interceptor in the chain is the container itself, which invokes the
business method of the EJB.

We augment a standard JBoss EJB container by plugging our
interceptors into the JBoss Container Framework. These
augmentations can be accomplished at the level of the server (i.e.,
defining a new container type that all EJB can use) or at the bean
level (i.e., defining a new container type that is local to a specific
EJB). We also augment the EJB server by plugging MBean-based
monitors into the JMX framework. This is a server level
augmentation that allows the monitors to access the other JMX
MBeans and all the containers and EJBs loaded into the server.

Interceptors can be used to implement precondition,
postcondition, and invariant assertions described in DBC.
Preconditions are evaluated before an EJB method is called and
the invariants and postconditions are evaluated before the results
are returned to the client. This is slightly different than DBC
because the container rather than the client evaluates the
preconditions. We see this as an advantage because it means the
client is required to have less knowledge about the service.

Monitors can be used to evaluate application level invariant
assertions. These evaluations can occur at timed intervals or an
interceptor can kick them off when a method invocation occurs.

We have limited our experiments to components that
explicitly expose attributes, but in the JBoss environment the Java
Reflection API could be used to accessnon-public attributes and
methods. However, we expect that components in a high
confidence composition would expose some sort of standard
interface - for example, an interface that deals with component
status.

4. SAMPLE PROBLEMS
We have developed extensions to the JBoss container that

support CBS assertion checking. While our prototype
implementation is specific to the JBoss implementation, the
concepts should apply to other EJB containers. Our extensions
include definition of new EJB container types, modifications to
the EJB deployment descriptor and server configuration files,
development of new interceptors, and development of new JMX
Mbeans.

4.1 Software Interlocks
Consider the simple example from section 2. That example

showed checking of dependent component status before method
execution was allowed. It was an example of a simple software
interlock. Some might argue that, for HCS, checking dependent
component status should occur before all method invocations.

In this section we present a slightly more involved example
of how a software interlock could be implemented. These
interlocks can establish the preconditions for executing the critical
methods of an EJB. Suppose we have a Weapon Control EJB that
implements a method (Fire) that will release the weapon. We have
an Identify Friend or Foe (IFF) EJB that determines the
nationality of a target. We have a threat evaluation EJB that
determines if the target represents a threat to allied forces (for
example closing on an allied position). Finally, we have a
Launcher EJB that determines the weapon and launcher status.
For safety reasons we wish to prevent the firing of the weapon in
all cases except when:
• all IFF sensors identify that the target is Hostile (as opposed

to Friendly, or Unknown),

• all Threat evaluation components identify that the target is
Closing (as opposed to Not Closing, or Unknown), and



• the Launcher is Ready (as opposed to Not Ready, or Error).

When all three assertions are satisfied, the weapon is allowed
to fire.

This interlock implementation decouples the safety interlocks
from the business logic implemented in the IFF, Threat
Evaluation, Launcher, and Weapon Control EJBs. The safety
interlocks are implemented as interceptors in the Weapon Control
container. The Weapon Control container is parameterized at
startup by the Weapon Control deployment descriptor.

The interceptors receive control when the EJB is first loaded,
just before the application begins execution, and when the
application is shut down. In this example, when the Weapon
Control containers interceptors receive control just before the
application begins execution they check the application
environment for containers that contain the dependent EJBs. That
is, the application is checked for IFF, Threat Evaluation, and
Launcher containers. References to these containers are stored in
the interceptors for later use.

The deployment descriptor for the Weapon Control EJB will
specify the Java classes that are to be used for the interceptors and
the dependent EJB container types for each interceptor. In
addition, the deployment descriptor could be used to specify the
dependent EJB attribute that is checked and the expected result of
evaluating the assertion.

On a call to the Weapon Control EJB, the interceptor chain
will be activated. The processing of the chain is as follows:
• The first interlock interceptor will determine if the call is to

the fire method. If not, control is passed to the next
interceptor. If it is the fire method, the interceptor will then
determine from the IFF EJB(s) if the target is hostile. If all
agree that the target is hostile, control will pass to the next
interceptor in the chain. Otherwise, an exception is returned
to the client.

• Similarly, the second interlock interceptor will determine if
the call is to the fire method. If not, control is passed to the
next interceptor. If it is the fire method, the interceptor will
then determine from the Threat EJB(s) if the target is closing.
If all agree that the target is closing, control will pass to the
next interceptor in the chain. Otherwise, an exception is
returned to the client.

• Finally, the third interlock interceptor will determine if the
call is to the fire method. If not, control is passed to the next
interceptor. If it is the fire method, the interceptor will then
determine from the Launcher EJB(s) if the launcher is ready.
If the launcher is ready, control will pass to the next
interceptor in the chain (in this example the next interceptor
is not concerned with the interlocks). Otherwise, an
exception is returned to the client.

The interlock interceptor chain is transparent to callers of the
fire method and is decoupled from the Weapon Control EJB.
Modification to the interlocks can be done by changes to the
deployment descriptor or the interceptors, without impacting the
client code or the Weapon Control or dependent EJB.
Deployment of a different Weapon Control EJB in the same
Weapon Control container allows the new Weapon Control EJB
to be controlled by the original interlocks.

4.2 Watchdog Timers
The software interlock example above used interceptors to

establish and enforce preconditions on the execution of critical

methods of an EJB. In this example we will describe the use of
JMX MBeans to establish and enforce application wide
invariants.

Suppose we have an application that contains one or more
components that use services outside the control of the
application. For example, the application may depend on a
database that is located at a different location. To function
properly this application must be able to connect to and exchange
information with the remote database. The fact that this
application is dependent on a remote database is not known until
the application is composed. That is, the database access interface
can hide the fact that it is using a remote database to provide its
service. Other components in the application might not know that
they have to account for the database component returning an
error when it cannotaccess to database.

This application can use an application wide invariant to
enforce that the remote database is always accessible. This
invariant can be enforced as follows. Develop a JMX MBean that
will periodically check the status attribute of an arbitrary EJB and
call a method on another EJB if the correct result is not returned.
A deployment descriptor for this MBean defines how often the
check is to occur, the type of the database access EJB, the
attribute to check on the database access EJB, the expected value
of the checked attribute, the type of the application shutdown
EJB, and the method to call on the shutdown EJB. The MBean is
parameterized with the deployment descriptor and deployed into
the JMX server.

At application startup, the MBean locates and stores a
reference to the database access EJB. At an interval defined in the
deployment descriptor the MBean is activated and it accesses the
attribute defined in the deployment descriptor. If the attribute
returns the correct value the MBean sleeps for appropriate amount
of time. If the attribute returns an incorrect value the MBean calls
the appropriate method on the shutdown EJB to gracefully
terminate the application. This example shows how the JMX
framework can be used to enforce application wide invariants.

4.3 Software Firewalls
Software firewalls are used to protect or wall off portions of

an application. For purposes of this example, we assume we want
to place a firewall between client code that uses an EJB and the
EJB that executes in a server. We also assume the purpose of the
firewall is to prevent the propagation of Java runtime exceptions
to the client. Firewalls could also be placed between any two EJB
and could also be used to prevent the return of erroneous values.

Interceptors are used to implement software firewalls as
follows. Develop an interceptor that passes the invocation
unmodified when a method is called and maps any runtime
exceptions propagated by the method to an exception type that is
defined in the deployment descriptor. Rather than a many to one
mapping the deployment descriptor could also specify a more
complex mapping among exception types. For example, if a
component propagates a java.lang.RuntimeException or some
subtype of java.lang.RuntimeException the interceptor catches the
exception and throws org.mitre.fatalServerError, also a subtype of
java.lang.RuntimeException.

This rather simple example shows a container can alter the
externally visible behavior of a component. Alternately, this
example shows how a container can force independently
developed components to adhere to a predefined client/server
exception handling policy. That is, clients will only see one type



of java.lang.RuntimeException regardless of the type thrown by
the component.

4.4 Composition Policy Enforcement
The previous examples illustrate the use of mediators and

monitors for the runtime checking of composed applications. Our
approach similarly provides the capability for load and
initialization time checking of system wide policies.

Consider a multi-sensor targeting system like that described
in section 4.1. Assume this application has a policy that states
there must be at least two IFF sensors available before the system
can transition to an operational state. Enforcement of this policy
can be accomplished with an interceptor that checks the
application policy when the interceptor receives notification that
the application is about to start.

Similarly, an MBean could be notified when an application is
loaded and the MBean could carry out the policy enforcement.
For example, the compositional policy for an application could
state that only EJBs that carry third party certification can
participate in the application. At application load time the MBean
could check each .jar file in the application for the digital
signature of a third party certification authority. The MBean
would unload the application if the digital signatures were not
present or were incorrect.

5. RELATED WORK
Our approach is similar in intent with work in the areas of

aspect-oriented programming (AOP) [2] and multi-dimensional
separation of concerns [4]. AOP focuses on separation of the
application’s “core classes” from the non-functional cross-cutting
concerns (aspects) and offers a development mechanism to
support weaving the code supporting the different aspects
throughout an application. The work on multi-dimensional
separation of concerns described in [4] identifies the need for
separation of overlapping concerns along multiple dimensions of
composition and decomposition. They define “hyperslices” and
“hypermodules” as flexible mechanisms to support decomposition
and composition. The hyperslices are written to encapsulate each
dimension of concern, and are integrated via hypermodules to
form the completed system. Our approach is based on similar
goals of separation of HCS concerns from component application
logic, and enabling application level assurance and verification in
a system composed with third-party components. Our HCS
container can be considered as an integration mechanism for the
HCS aspects of a system, but a mechanism that is based on small
extensions to the EJB model.

The Object Infrastructure Framework (OIF) described in [1]
is a similar approach focused on achieving non-functional “ilities”
via “injectors” attached to communications. They have
experimented with their approach by developing a CORBA-based
implementation of the framework, attaching meta-information to
CORBA method invocations which identifies the sequence of
injectors that are to be processed for that communication. The
“ilities” that have been addressed with this approach include
reliability, maintainability, quality of service and security. The
OIF approach to intercepting communications is similar to our
interceptor-based approach, except that our approach is
encapsulated within a container that is configurable at deployment
time.

The SEI is investigating the use of prediction-enabled
component technology (PECT), integrating component

technology with analysis technologies [5]. This integration allows
analysis and prediction of assembly-level properties prior to
assembly. Our investigation of mechanisms to determine at
deployment time satisfaction of state properties may be considered
as a use of such prediction capability. For HCS, we are interested
in providing assurance in addition to deployment-time prediction;
for those needs we also support runtime techniques to monitor
preservation of the properties. With these techniques we support
assertions on the collective behavior of a component assembly
that is specified and enabled outside of the context of the
individual components. This supports the higher level of
composition contracts needed to utilize CBS in high-integrity
systems.

With respect to the goals of this workshop on predictable
assembly, a fundamental goal of HCS is achieving predictable
software. CBS presents some challenges for predictable behavior
in that the runtime context of the components is not known at
development time. Our HCS containers provide a mechanism to
constrain component behaviors both at deployment time and
runtime to better ensure that behavior is within the expected
bounds. At deployment time, an EJB deployment can be rejected
if an assembly does not satisfy the deployment assertions. This
would constrain the application from starting in an unexpected
state. At runtime, assertions can be monitored such that if an
unexpected state is detected, the application can be transitioned to
a different, presumably safer state. Such an approach can provide
more confidence that the system is in a known state even in cases
where the actual component behavior differs from its predicted
behavior, which is an essential design goal of HCS.

6. CONCLUSIONS/FUTURE DIRECTIONS
Currently we are experimenting with a prototype system that

supports a set of augmentations to the JBoss EJB container. Via
these augmentations, we can support some straightforward
evaluation of assertions at deployment time and at runtime. Our
initial focus has been on the development of interceptors to
support communication mediation. We also plan to develop
MBeans to support periodic monitoring of state correctness,
providing additional monitoring and recovery support to help an
application ensure state correctness. As an outcome of this project
we hope to:
• Develop a better understanding as to what HCS services

would be of most benefit in a CBS context.

• Determine to what extent these services may be incorporated
in standard container technology.

• Identify how verification of components and applications
may be improved via container-based implementation of
these services.
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