
Iterators Reconsidered

Jason O. Hallstrom, Scott M. Pike, and Nigamanth Sridhar
Computer and Information Science

Ohio State University
2015 Neil Ave

Columbus OH 43210-1277 USA
{hallstro,pike,nsridhar}@cis.ohio-state.edu

ABSTRACT
Software developers are eager to increase the scale of their
software products at a rate proportional to the growth of
computing resources. With memory, bandwidth, and com-
puting power doubling roughly every eigtheen months, de-
velopment approaches that are not based on compositional
reasoning techniques can not be used to engineer the sys-
tems of tomorrow. The enormous scale of these projects
far outstrips our ability to understand them using ad-hoc
approaches.

Industry best practice recognizes the importance of com-
ponent reuse, but the emphasis is weighted heavily on the
reuse of component code, often times neglecting the need
to reuse the effort that went into understanding the com-
ponent’s behavior. That is, any scalable software engineer-
ing discipline must provide mechanisms for reusing software
components, as well as mechanisms for reusing the reasoning
effort required to use those components.

This paper examines the Iterator pattern with regard to
compositional reasoning. The approach, touted as indus-
try best practice, is shown to provide ample opportunity
for breaking the principles of encapsulation. These various
hazards are briefly described, and several techniques for en-
suring safe use of the pattern are explored.

1. GOD’S LAW
In March 2001, Silicon Valley hosted the flagship con-

ference “ACM1: Beyond Cyberspace” [10]. With 14 ple-
nary speakers forecasting the next 50 years of computing,
it was a veritable pep-rally for the knights-errant of tech-
nology. Like most crusades, there was a motivating belief
behind which the movers and shakers could unite. In the
case of ACM1, that belief was in Moore’s Law: the unparal-
leled doubling of storage, bandwidth, and computing power
roughly every 18 months. The inevitably smaller, faster,
and cheaper computing devices of tomorrow were depicted
as a holy grail within our reach. Astrophysicists, oceanogra-
phers, biogeneticists, and computer scientists alike hopped

Fifth ICSE Workshop on Component-Based Software Engineer-
ing. Orlando FL. May 19–20 2002.

on the speculation bandwagon of promised technology. The
future — so we were told — would inherit ubiquitous com-
puting, intelligent mobile agents, synoptic knowledge of the
oceans, and interplanetary exploration. But somehow a ma-
terial question got drowned in the wake of enthusiasm: How
would we ever engineer such systems?

Conspicuously understated was the so-called “God’s Law”
expressed by William Buxton [2] as the fact that human ca-
pacity for understanding is limited. Developing applications
at the pace of Moore’s Law will ultimately dwarf our raw
abilities to manage their scale. It is well-known that prob-
lems of scale in software cannot be solved simply by adding
more people [1]. To borrow a metaphor from Gerald Wein-
burg: you can’t make a baby in one month by putting nine
women on the job. The complexity of large-scale software
simply outstrips the capacity of our unaided intellectual abil-
ities. This asymmetry underscores the importance of mod-
ular techniques that support local component cer-
tification and compositional reasoning reuse about
system behavior and correctness.

In principle, well-designed software components can help
software engineers understand, and reason soundly about,
the behavior of component-based software systems. Achiev-
ing sound reasoning, however, is more subtle than it might
seem. The problem is tricky. Software components that are
not designed to support modular reasoning can — and of-
ten do — exhibit unanticipated interactions when integrated
into an overall system. Side-effects of component interfer-
ence make it intractable to predict overall system behavior
by composing local properties of the system’s subcompo-
nents [9]. Put otherwise, component-based development is
not necessarily scalable development.

Reuse, of course, is central to the predictable construction
of scalable systems. Fortunately, reuse is fashionable these
days, even if component-based reasoning methods are not.
Current practice is pervaded by reuse strategies including
design patterns [5], software infrastructures (EJB, COM+,
CORBA), and code libraries (java.util, C++ STL). Unfor-
tunately, these approaches typically fall short of supporting
abstraction, encapsulation, and information hiding — prop-
erties essential to component-based methods for modular
composition and reasoning. As such, the landscape of the
component revolution — as witnessed by current practice —
is like quicksand: easy to get stuck in, and unable to support
the intellectual burden of reasoning about system behavior.
A sound foundation for scalable development depends on lo-
cal, compositional reasoning methods to serve as footholds
by which we may climb above the mounting complexity of



our ever-growing systems.
One common misconception is that we appear to know

how to reason about small systems, so therefore we should
be able to apply the same techniques directly to large sys-
tems. In his Notes on Structured Programming [4], Dijkstra
exposes the fallacy of this argument:

Apparently we are too much trained to disregard
differences in scale, to treat them as “gradual dif-
ferences that are not essential”. We tell ourselves
that what we can do once, we can also do twice and
by induction we fool ourselves into believing that
we can do it as many times as needed, but this is
just not true! A factor of a thousand is already far
beyond our powers of imagination!

Put otherwise, the techniques that allow reasoning about
a program with ten lines of code cannot necessarily be ap-
plied directly to a program with ten thousand lines of code.
Tractable reasoning about large systems requires techniques
for leveraging our reasoning about smaller, locally certifi-
able components into a compositional certification of the
overall system resulting from component integration. Code
reuse and reasoning reuse must go hand in hand. Differ-
ences in the scale of software systems cannot be disregarded
if we want to continue along the path to building larger and
larger systems. We have to learn to embrace reuse in more
dimensions than just code reuse; reasoning reuse must be
equally as important if we want to overcome the complexi-
ties of scale.

The remainder of this paper sketches a silhouette of Iter-
ators as a composition mechanism that supports code reuse
without supporting reasoning reuse. Iterators are touted as
a so-called “best practice” in software engineering, both as
a codified design pattern [5] and as part of the ANSI C++
Standard Template Library [8]. As such, Iterators are rep-
resentative of mainstream currents of code reuse in present-
day software practice. Section 2 presents a brief overview of
iterators and their uses. In Section 3, we show how iterators
can thwart compositional reasoning by breaking encapsua-
tion. We present some desiderata for safe use of iterators in
Section 4, and summarize our conclusions in Section 5.

2. ITERATORS: A BEST PRACTICE?
The Iterator patter [5] describes a technique for exposing

individual elements of a container class without exposing
the underlying container representation. Container classes
supporting the pattern provide one or more factory meth-
ods used to generate the appropriate iterator, depending on
how the container elements will be traversed. A binary tree
container, for example, might provide one factory method
for creating pre-order iterators, another for creating post-
order iterators, and a third for creating in-order iterators.
The iterators encapsulate the state required to perform each
traversal; multiple tree traversals can therefore be performed
simultaneously.

Iterators come in two basic flavors, depending on the access-
control tastes of the client. If the iterator client does not
need to control the iteration progress, an internal iterator
is appropriate. Iterators of this type will typically provide
only a single iterate(...) method, which, when invoked with
a particular operation, will apply the operation to each ele-
ment of the container. An iterator of this type might be used
to increment every integer in a Set container. In this case

the iteration is under the control of the iterator; the client is
only concerned with applying a particular operation to the
elements of a container.

Not all clients are so passive. The control-hungry lot de-
sire a richer interface for manipulating the behavior of the
iterator. External iterators satisfy this desire by providing
methods for navigating the elements under the iterator’s
control. Typical interface methods include: moveFirst(),
moveNext(), currentItem(), and isDone(), all with their ob-
vious meanings. Given an algorithm that works on linear
inputs, an external iterator can be viewed as a composition
mechanism – a mechanism for grafting an algorithm onto
an arbitrary container class. In Java, for example, iterators
are the glue that connect sorting algorithms to binary trees,
sets, hash tables, etc.

What is the itch that iterators are trying to scratch? Sim-
ply put, they seek to decouple algorithms from containers.
This is acheived by sequentially exposing the elements of
an arbitrary container through a standard interface, which
can be presupposed by various algorithms. In the C++
Standard Template Library, iterators are considered a gen-
eralization of pointers that can enable clients to traverse an
arbitrary container component in the same way that they
would traverse an ordinary C array [8]. As such, decoupling
is effectively realized by the level of indirection introduced
by pointers. As we shall illustrate, however, the exposure of
external aliasing is also the root of breaking the encapsula-
tion barriers of containers. Based on the observed usage of
iterators in practice, the benefits of iterators are well under-
stood by practitioners. It is unfortunate that the hazards of
their usage are not.

3. NON-COMPOSITIONAL REASONING
The iterator approach has potential to break encapsula-

tion by exposing aliases into the internal representation of
a container component. Thirty years of research in infor-
mation hiding dictates that this practice undermines sound
component-based design and development [7]. The reason
is simple: breaking encapsulation exposes both the com-
ponent and its clients to interference side-effects that can
thwart modular reasoning about component behavior [6].

For example, consider a Set component implemented as
a binary search tree (BST). The correctness of Set opera-
tions like Add and Remove depends on the binary search tree
property being satisfied as a representation invariant. Any
algorithm using an iterator to traverse the Set, however, has
access to the key values of items contained in the underlying
representation. Changing any key value can potentially vio-
late the binary search tree property, so that entire subtrees
become “lost” as unretrievable items from the Set. This is
illustrated in Figure 1. Changing just one key value (from
78 to 28) in the Set presented in Figure 1(a) violates the
invariant required for correct tree operations in Figure 1(b).

As another example, consider an iterator that increments
every integer in a Set by one. Such an operation on the
Set may be “safe” for BST-implementations, but it has dis-
astrous consequences for the correctness of hashing imple-
mentations: the resulting values may no longer be located
in their correct hash buckets! This is illustrated in Figure 2,
where integers are hashed into buckets based on their value
mod 3. Figure 2(a) shows the state of the representation
prior to incrementing each integer via iteration. Figure 2(b)
shows the representation after the iteration. Note that the



6

34

3 32 54

78

87

996543

Set s = <3, 34, 32, 54, 6, 78, 99, 43, 65, 87>

(a) Set s represented as a binary search tree

6

34

3 32 54

28

87

996543

Set s = <3, 34, 32, 54, 6, 28, 99, 43, 65, 87>

(b) Set s with key value 78 changed to 28

Figure 1: Binary Search Tree

3 32546 34
78 99

654387

Bucket 0 Bucket 1 Bucket 2

Set s = <3, 34, 32, 54, 6, 78, 99, 43, 65, 87>

(a) Set s represented as a hash table

Bucket 0 Bucket 1 Bucket 2

79 100
4 7 55 35 88 44 33 66

Set s = <4, 35, 33, 55, 7, 79, 100, 44, 66, 88>

(b) Set s after iterator incremented all values by 1

Figure 2: Hash representation

representation invariant is broken now, since none of the
integers in the resulting Set is in its correct hash bucket.

By enabling external access to internal structure, iterators
prevent reasoning about the correctness of these Set imple-
mentations in isolation; that is, they can not be validated
modularly via local certifiability. As a composition mecha-
nism, iterators facilitate code reuse by splicing algorithms
onto arbitrary containers, but they open the door to alias-
ing side-effects that undermine reasoning reuse about the
components under composition.

In Section 1, we claimed that the way to reason about
large systems is to compose the reasoning arguments of the
smaller constituent components in the system. However,
as is evidenced by the foregoing example, iterators could
potentially invalidate all of the reasoning arguments that
have been built up until this stage. This would take us back
to the point where we would have to restart from scratch
in building a sound argument for why the system works. In
effect, a single iterator in a system could potentially ruin all
chances of modular reasoning in an otherwise sound system.

Practitioners may claim that although iterators are po-
tentially dangerous, they can still be used safely. Such was
the prevailing wisdom of best practices when goto state-
ments were the talk of the town. The analogy here is more
than skin-deep. Among its other ills, the goto statement
could break procedural abstraction by enabling control to

jump into unrestricted segments of code. Similarly, itera-
tors can break component abstraction by enabling clients
to jump into unrestricted segments of data. Of course, we
never really got rid of jumps; we simply hid them from pro-
grammers by using compilers to enforce their safe introduc-
tion into executable code. So too, we do not wish to get
rid of component traversals; we simply need to encapsulate
safe mechanisms for accessing their data, lest we suffer the
same fate as the goto cowboys: namely, intractable (i.e.,
non-compositional) reasoning about program behavior [3].

4. ITERATORS AND DATA PROTECTION
If encapsulation is the cement that holds modular verifica-

tion techniques together, aliasing is the jack-hammer. Com-
ponents which leak aliases into their internal representation
typically cannot be verified in isolation; the Set component
implemented as a binary search tree is an representative ex-
ample. If the iterator used to traverse the elements of the Set
returns aliases to the individual container elements, a sin-
gle update of any element may violate the BST invariant.
Thus, even if the Set implementation is correct in isolation,
the iterator interface makes it vulernable to tampering when
composed with client algorithms. The upshot is that mod-
ular verification efforts can be compromised.

Readers accustomed to programming in languages like
Java might argue that neither the Set nor the iterator have



violated principles of encapsulation. After all, the imple-
mentation has not exposed aliases to its internal structure,
only to the elements stored within that structure. With the
exception of the scalar types, Java does not provide support
for value-type variables — everything is a reference. Return-
ing references to objects within a container class is common
practice. How has encapsulation been violated?

While it may not be possible for a Set client to gain knowl-
edge of its internal represenation, it is possible for a client to
modify elements of the container without going through the
container interface. Depending on the container represen-
tation, some updates may be safe, while others may violate
the representation invariant. That is to say, the correctness
of the Set implementation depends on the context in which
it is used. Any attempts at proving the correctness of such
a component must explicitly consider how the component is
being used on a case by case basis. One small step for code
reuse, one giant leap (backwards) for reasoning reuse.

Without abandoning the Iterator pattern altogether, there
are some techniques which can be used to ensure the scal-
ability of the approach. These techniques rely on a notion
complementary to information hiding, namely, information
protection. Iterators providing information protection guar-
antee that any element exposed through the iterator can
not be modified without going through the associated con-
tainer’s interface. With this additional proof obligation in
place, it is impossible for a client to violate the representa-
tion invariant. The iterator and the corresponding container
class can now be verified independently of their client-side
context of use.

One obvious approach to achieve information protection
is to design iterators so that they yield values rather than
references. If a client modifies a value returned by an itera-
tor, no harm done, the original value is still preserved within
the container. This approach may be viable for simple data
types like integers or characters, but may be prohibitively
expensive for larger, more complex objects. So how can
an iterator provide efficient access to (potentially large) ele-
ments of a container class, while still achieving information
protection?

When a container class is designed to hold items of a par-
ticular type, it is sometimes possible to return references to
the container elements without violating information protec-
tion. In particular, when a container is designed to hold im-
mutable objects, it is always safe to expose aliases to the con-
tained elements. By definition, the value of an immutable
object can not be modified once the object has been created.

Note that the immutable object approach is only applica-
ble if the container is designed with knowledge of the com-
ponents that it will hold. Because the correctness proof will
be able to explicitly consider the various contained types,
the immutability obligation can be dispatched. This does,
however, impose a subtle constraint on other classes: de-
rived classes of an immutable base class must themselves
be immutable. If this were not the case, derived class ob-
jects could be placed in the container and modified without
the container’s knowledge, whereby reasoning is set back to
square one.

Improved compiler support for type safety could prove
useful here. Compilers designed to determine whether a
given class is immutable could enforce the constraints dis-
cussed above, thereby extending the applicability of the fore-
going approach to generic container classes. If a particular

container class is tagged as element-immutable, the compiler
can prevent the developer from adding mutable objects to
the container. The generic container and iterator pair can
now be modularly verified because the compiler guarantees
that the container will never hold mutable objects.

Another approach to achieve information protection is to
implement the iterator as a layered extension of the original
container component. The iterator has access to the inter-
nals of the original aggregate only through the aggregate’s
published interface. This kind of black-box reuse restricts
the scope of possible changes the iterator can make to the
state of the aggregate. So long as the published interface
allows only safe access to the aggregate, the iterator cannot
render the representation invalid by enabling surreptitious
changes.

Implementing the currentItem() method can be achieved
by actually removing an item from the aggregate and re-
turning it to the client. The moveNext() operation would
then put the item back into the aggregate. With this im-
plementation, however, care needs to be taken that items in
the aggregate are not skipping or duplicated. To avoid such
errors, an auxiliary aggregate object can be used to hold the
processed items, and then swapped with the original aggre-
gate at the end of the iteration.

The only safe way of using internal iterators is if the op-
eration that the internal iterator applies on the items in the
aggregate is read-only. The operation should not modify
any of the items in the aggregate. Further, no state must
be retained after the interation has been completed. For
instance, the client must not be able to store references to
items in the aggregate, since such stored references also lead
to the same problems cited in the examples in Section 3.

5. CONCLUSION
As computing power grows, it is safe to say that soft-

ware will follow suit with ever larger and more complex sys-
tems. The good news is that industry has incorporated reuse
composition techniques into many mainstream development
practices. The bad news is that code reuse — by itself — is
an insufficient basis for scalable development. Without com-
positional reasoning techniques supporting the predictable
assembly of components, the intellectual effort required to
understand complex systems becomes intractable.

It is well-recognized that sound software engineering dis-
ciplines should provide composition mechanisms for code
reuse. With promises of drastically reduced development
costs, industry has been certainly eager to pick up on this
concept. The iterator pattern is but one such example of
present-day best practices. As a composition mechanism,
iterators support mix-and-match reuse between container
components and traveral algorithms. The gain in code reuse
is appreciable, but the drawbacks with respect to undermin-
ing modular verification cannot be overlooked. While the
size of software products has grown, the promise of drastic
cost reductions have not yet been realized.

Reusable software components have come at a cost. Sur-
prisingly the purchase price is not the issue, but rather the
exhorbitant cost of understanding how reusable components
interact with one another when composed, both with each
other, as well as with the hosting application. The first
phase of the component revolution targeted the cost of writ-
ing lines of code. The next phase should target the cost of
understanding what is written.



6. REFERENCES
[1] F. P. Brooks, Jr. The Mythical Man-Month.

Addison-Wesley Publishing Co., Reading, Mass., 1975.

[2] W. Buxton. Less is more (more or less). In P. J.
Denning, editor, The Invisible Future: the seamless
integration of technology into everyday life, pages
145–179. McGrawHill, 2001.

[3] E. W. Dijkstra. Go To statement considered harmful.
Communications of the ACM, 11(3):147–148, 1968.

[4] E. W. Dijkstra. Notes on structured programming. In
O. J. Dahl, E. W. Dijkstra, and C. A. R. Hoare,
editors, Structured Programming. Academic Press,
London, 1972.

[5] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns. Addison Wesley, 1995.

[6] S. S. Owicki and D. Gries. An axiomatic proof
technique for parallel programs i. Acta Informatica,
6:319–340, 1976.

[7] D. L. Parnas and D. P. Siewiorek. Use of the concept
of transparency in the design of hierarchically
structured systems. Communications of the ACM,
18(7):401–408, 1975.

[8] A. A. Stepanov and M. Lee. The Standard Template
Library. Technical Report X3J16/94-0095,
WG21/N0482, 1994.

[9] B. W. Weide and J. E. Hollingsworth. Scalability of
reuse technology to large systems requires local
certifiability. In Proc. of the 5th Annual Workshop on
Software Reuse, Palo Alto, CA, October 1992.

[10] www.acm.org/acm1. ACM1: Beyond cyberspace,
March 2001.


