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Assembly-Level Property Predictions: 

Toward Standard Labeling

ABSTRACT
One risk inherent in the use of software components has been that
the behavior of assemblies of components is discovered only after
their integration. The objective of our work is to enable designers
to use known (and certified) component properties as parameters
to models that can be used to predict assembly-level properties.
Our concern in this paper is with empirical component properties
and compositional reasoning, rather than formal properties and
reasoning. Empirical component properties must be measured;
assessing the effectiveness of predictions based on these properties
also involves measurement. This, in turn, introduces systematic
and random measurement error. As a consequence, statistical
models are needed to describe empirical component properties and
predictions. In this position paper, we identify the statistical
models that we have found useful in our research, and which we
believe can form a basis for standard industry labels for component
properties and prediction theories.

Keywords
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1. INTRODUCTION
One risk inherent in the use of software components has been that
the behavior of assemblies of components is discovered only after
their integration. The objective of our work is to enable designers
to use known (and certified) component properties as parameters
to models that can be used to predict assembly-level properties. 

Of course, this objective is not unique to our work. It could, in fact,
be considered a fundamental goal of software engineering. In the
realm of theoretical computer science, a significant body of
research has accumulated under the general heading of composi-
tional reasoning. Compositional reasoning is nothing more than
divide and conquer. That is, we translate something that we need to
know about the whole (i.e., the assembly) into things we need to
know about its parts (i.e., its components)1. It is, presumably, eas-
ier to obtain the properties of the parts than that of the whole. Of
course, having obtained the properties of the parts we need to com-
bine (or compose) them to achieve the whole; hence, composi-
tional reasoning.

Much of the theoretical work on compositional reasoning stems
from research in formal systems. In these systems, component
properties are specified in a formal logic, for example temporal
logic, and are combined using compositional operators in that
logic. Formal approaches to compositional reasoning treat soft-
ware components as mathematical objects that are described by
mathematical models, for example labeled transition networks.
While the mathematical treatment of software components is the
great strength of any formal approach, it is also its Achilles heel.
Automated theorem proving is known to be NP-complete, and thus
introduce new problems of scale and complexity in place of those
eliminated by divide and conquer.

We do not argue against formal reasoning. Instead, we observe that
where formal approaches are infeasible, empirical approaches
must be used. In this setting, software components and component
assemblies are treated as physical rather than mathematical
objects. Component and assembly properties are observed rather
than asserted (or proved); assembly properties are predicted
through the use of theories, rather than demonstrated through
proofs of theorems. At its limit, the empirical approach is indistin-

1  We set aside the question of whether compositional reasoning in
component-based systems can done by bottom-up synthesis
rather than top-down analysis. We merely observe that synthesis
is desirable where pre-existing components are to be reused in
different applications.
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guishable from the fabled scientific method. Many practical and
theoretical justifications for the use of an empirical approach to
compositional reasoning can be found in Herbert Simon’s classic,
The Sciences of the Artificial [7].

Rigorous observation in the empirical approach takes the form of
measurement. For reasons both obvious and arcane, measurement
invariably introduces error. Thus, empirical component properties
are described not as discrete values, but as probability density
functions over a range of values. Assessing the effectiveness of a
property theory also involves measurement, this time in a more
classical application of the scientific method. The property theory
is a hypothesis; we attempt to falsify the hypothesis by comparing
predicted assembly properties with measured assembly properties.
Thus, like component properties, measured assembly properties
are described using probability density functions over a range of
values. The “scientific” validity of property theories is expressed
statistically by both descriptive and inferential methods.

We use Figure 1 to introduce and relate terminology used in the
remainder of this paper: assemblies (dashed boxes), components
(solid boxes), component properties (triangles), programming
interfaces (lollipops), control/data composition (‘c1•c2’), and ana-
lytic composition via a property theory (‘F’). The property theory
is parameterized by a set of component properties (‘Cp’), a set of
component interactions (‘Ci’), and environmental factors (‘E’).
One premise of our research is that we can suitably constrain the
interaction topology and mechanisms, and the environment, to
facilitate component property certification and compositional rea-
soning from certified properties. This applies to both formal and
empirical compositional reasoning. This paper is concerned solely
with empirical properties and theories.

Figure 1. The assembly property (‘A.p’) is computed by func-
tion (‘ F’). This function expresses a property theory. (‘Cp’) 
denotes the set of component properties, not necessarily of the 
same domain, (‘Ci’) the set of enabled interactions, here simply 
(‘c1 • c2’), and (‘E’) the set of environmental factors.

Our position is that all empirical properties and property theories
can be described in a uniform way, using the same, or very similar,
statistical models. A fundamental statistical model for measures of
component property and assessments of the effectiveness of prop-
erty theories is the statistical interval (Sect. 2.). Statistical intervals
can be used to describe component properties (Sect. 3.) and prop-
erty theories (Sect. 4.). The use of statistical intervals to describe
component properties and property theories presents several new
challenges that must be addressed, including uniform treatment of
measurement error, propagation of error, and descriptions of the
sample set of assemblies against which property theories are vali-

dated1 (Sect. 5.). We conclude with conjectures about desirable
characteristics of standard labels beyond particular statistical mod-
els (Sect. 6.).

2. STATISTICAL INTERVALS
It is said that the “Eskimo” have dozens of words for snow2. While
this might be a matter of interpretation, personal experience s
gests that statisticians have a different kind of statistical inter
for every occasion. We limit our discussion to only the most ru
mentary aspects of intervals; interested readers might consult s
dard texts for more detailed information [4, 9]. 

Intervals have two uses in our context. One use is to express
estimated value of component properties, and the quality of th
estimates. A second use of intervals is inferential: to predict 
future performance of components and property theories.

Within this second use, we will find it useful to distinguis
between normative confidence intervals and an informative3 toler-
ance intervals. In a normative confidence interval, an interval 
is specified in measurement units appropriate for a property, 
the probability p that the norm will be satisfied by some object 
calculated. When used informatively, we do the converse: p is
specified, and the interval is calculated. We would use the norm
tive interval if we were interested in what proportion of a popu
tion will satisfy stated norms. We would use the informativ
interval if we wanted to know the interval that contained some p
portion of a population.

Different statistical intervals apply to different distributions o
data. Where data distribution is not normal, it might be tran
formed into a normal distribution using a standard inversable fu
tion defined for this purpose, for example one of the Box-C
family of transformations, although subtleties attend to the int
pretation of the inverted transformation [4]. It might be that t
data, while not normal, follows some other distribution, e.g
Weibull, for which there are corresponding methods for calculat
intervals. If all else fails, there are distribution-free methods f
calculating intervals; although such methods yield wider interva
they will be sound.

Although the ideas we present herein apply to any empirical pr
erty, throughout the remainder of this paper we will use latency
the property of interest for components and assemblies. The il
trations are drawn from a small-scale experiment conducted at
SEI [5, 6]; in the text, all references to “our experiment” or simil

A

p = F(Cp, Ci, E)
c1 c2

c1 • c2 

c1.p c2.p

1  More accurately, attempt to falsify.

2  See http://www.urbanlegends.com/language/ 
eskimo_words_for_snow_derby.html

3  Although some readers may prefer the classification presc
tive/descriptive, we opt for using the classification normativ
informative when referring to the purpose of the intervals. 
would be statistically incorrect to call a statistical interv
descriptive because they all belong to what is called inferential
statistics—as opposed to descriptive statistics.
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phrases refer to this work. Notationally, c.p denotes property p of
component c; analogously, a.p denotes property p of assembly a.
Uppercase letters generally denote sets, and lowercase letters
denote set elements.

3. COMPONENT LABELS
The measurement and subsequent description of empirical compo-
nent properties does not introduce novel methodological chal-
lenges. Objective measurement requires a measurement object (the
component), a measurement scale for the component property of
interest (e.g., time, in seconds), and a measurement apparatus (e.g.,
the Microsoft Windows’ high-performance clock). Measurement is
conducted with the apparatus within some controlled environment,
with control exerted over all independent variables of the depen-
dent (measured) property.

3.1 Fundamental Label: The Property 
Measurement
In general, the measurand Y, or property of interest, is a function of
N values:  [8]. For our latency experiment
these values included, in different combinations depending upon
component type, execution time, blocking time, and period. We
would like to know the true value of Y, component latency. Of
course, the true value is not obtainable, as the following definition
makes clear: 

True Value: the mean (µ) that would result
from an infinite number of measurements
of the same measurand carried out under
repeatability conditions, assuming no sys-
tematic error. 

Because we can not, even in principle, know the true value of µ,
we must use an estimator for it, produced by statistical methods. 

For example, we take a sample of observations of X, and use its
average  as the estimator of µ, a population parameter. The
uncertainty associated with this estimator is expressed as the stan-
dard deviation s such that the true—and unknown—value of µ will
fall within some interval  with some specified confidence.
The factor k is known as coverage factor. When k=1,  yields
a 68% confidence interval. That is, we have 0.68 confidence that
this interval contains µ. Typically, we compute the 0.95 confidence
interval (k=2), which yields higher confidence but a larger bound.

This confidence interval expresses a fundamental component mea-
sure; it is fundamental because  is how a component property
is modeled in any property theory parameterized by that compo-
nent property.

3.2 Secondary Labels: Predictions of Future 
Property Measurements
It might be useful to have other descriptors, or labels, for compo-
nent properties. One such label is the tolerance interval. For exam-
ple, in the case of component latency, the consumer might want to
know what latency interval  contains a specified proportion
p of all executions of component c. For instance, a tolerance inter-
val with p=0.95 might state that there is a 0.95 probability that any

given execution of a component will have a latency 
, where  is the computed interval.

Another potentially useful label is the conceptual, but not math
matical1, inverse of the above tolerance interval. This is the con
dence interval on the probability of satisfying some prope
specification. It is conceptually the inverse of the tolerance inter
since here we specify the latency interval and from this comp
the probability that any particular execution will fall within this
interval. For example, we might specify the latency interval 
and from this calculate that there is a 0.64 probability that a
given execution of a component will fall within the interva

. 

The tolerance interval is useful for informative purposes; 
informs the consumer about the likely performance of a comp
nent with respect to a property. The confidence interval on 
probability of meeting a specification is useful for normative pu
poses; it informs the consumer about the probability that a com
nent will satisfy a specified norm.

4. PROPERTY THEORY LABELS
Measuring and describing the effectiveness of property theorie
methodologically more challenging than measuring compon
properties. As noted earlier, at the limit this measurement proc
reduces to theory falsification as it is practiced in the empirical s
ences; in that sense, at least, no new ground is broken. Our con
is with characterizing (labeling) the quality of a property theor
which translates into labeling the accuracy of its predictions, a
how often they are accurate.

4.1 Fundamental Labels: One-Tail Inferential 
Intervals
We again use inferential statistical models to characterize h
effective a property theory is likely to be for future predictions. F
this purpose we use the confidence and tolerance interv
described in Sect. 3.2. In this case, though, instead of latency
are interested in the magnitude of relative error (MRE) betwe
predicted and observed latency:

where a.λ′ is the measured assembly latency and a.λ is the pre-
dicted latency.2 A normative confidence interval will describe the
probability that the MRE for a particular prediction will lie within
a specified MRE interval. 

Y f X1 X2 … XN, , ,( )=

x

x ks±
x ks±

x ks±

x ms±

1  There are different equations used to compute these two form
intervals.

2  We note in passing that a.λ′ is itself described using the funda
mental label used for components. That is, for statistical ana
sis, the assembly is treated as a component, and the estimato
assembly latency is described by an interval obtained usin
coverage factor k=2.

50ms 17ms± 17ms±

5ms±

50ms 5 ms±

MRE
a.λ′ a.λ–

a.λ
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Notice that the lower bounds for an MRE interval represents situa-
tions where predictions are better than the mean MRE of the statis-
tical sample (in our experiment, for N=30 assemblies). While we
may wish to know how frequently our predictions are better than
the mean, we may also only be concerned with the occasions when
the predictions are worse than the mean. In this case we use a one-
tail interval, or bound, instead of a two-tail interval. The one-tail
tolerance interval for our experimental latency theory is summa-
rized in Table 1. 

To compute these results we supplied the sample size N=30, the
desired confidence level γ = 0.95, and the proportion of the popula-
tion p=0.90 we wished to include within the tolerance interval. UB
= 0.0633 is the computed upper bound of the tolerance interval.
This is interpreted as stating that we have a probability of 0.90 that
any particular latency prediction will have an MRE no greater than
6.33%, and we have 0.95 confidence in this upper bound. 

As with measures of component properties, one and two-tail nor-
mative confidence intervals can be computed by specifying inter-
val bounds and computing p, the probability that any particular
prediction will satisfy these specified bounds.

4.2 Secondary Labels: Linear Correlation
Linear correlation is a descriptive statistic: it describes the strength
of correlation between two datasets; it is not directly useful for
drawing inferences about future datasets. A consumer might be
interested in linear correlation analysis as a descriptor of previous
experimental validations of the accuracy of a property theory.

We characterize the accuracy of the property theory using correla-
tion analysis. Correlation analysis allows us to assess the strength
of the linearly relation between two variables, in our case, pre-
dicted and observed assembly latency. The result of this analysis is
the coefficient of determination, 0 ≤ R2 ≤ 1, where 0 represents no
relation, and 1 represents a perfect linear relation. In a perfect pre-
diction model, predicted and observed latency would be identical;
therefore, the goal for the model builder is a linear relation.

The property theory we developed as part of our small-scale exper-
iment yielded R2 = 0.9999657, with a significance level α = 0.01.
This result means that the property theory accounted for 99.99% of
the variation in observed latency; moreover, the significance level
means that there is only a 0.01 probability that this correlation
could have been achieved by chance.

5. CHALLENGES
We have presented several useful statistical models for describing
the properties of components and property theories, and for infer-
ring future performance. Nonetheless, for standard empirical labels

to become reality, several important challenges must be addressed.
The two discussed here, uncertainty propagation and bounded
design space, are not by any means the only challenges, just the
ones that present the most immediate obstacles in our research
path.

5.1 Uncertainty Propagation
All measurement entails error of two sorts: systematic, and ran-
dom. Systematic error is introduced by the measurement apparatus
and measurement process. Code instrumentation for latency
imposes execution overhead, and is therefore a source of system-
atic error. Fluctuation of environmental variables that are not under
complete experimental control, for example CPU load introduced
by background operating system processes, is one source of ran-
dom error; the inherent (in)accuracy of measurement instruments
is another. Two questions arise: how to express uncertainty of com-
ponent properties? and, how to propagate this uncertainty through
property theories?

Component Property Uncertainty.  Recall that the measure of
property Y is a function of N values: ,
where at least some of Xi are themselves measurands of the com-
ponent1. Assuming all Xi are measurands for simplicity, we know
that we can at best provide estimators xi of these values, and use
them to compute , which is an estimator for
Y. The combined uncertainty  is determined by the law of
propagation of uncertainty [8]:

where  is the partial derivative  evaluated in xi, and

 is the covariance of xi and xj, which is a measure of how

strongly correlated the two variables are.

To illustrate, our measure of component latency was dependent
upon two measurands, X1 for the measured latency of the compo-
nent, and X2 for the correction2 for the overhead to start and stop
the high performance clock (the “stopwatch”); the latter ter
accounts for the major source of systematic error. The compon
latency was obtained with the formula . We us
the above law to compute the standard uncertainty of y. Fo
nately, there are simplifications. The second term is 0 becausx1
and x2 are un-correlated, so their covariance is 0. In addition, 
partial derivatives in the first term are always 1, independently
the value of xi for which they are evaluated. 

Table 1. : Tolerance Interval for Property Theory

N = 30 sample size

γ = 0.95 confidence level

p = 0.90 proportion

µMRE = 1.99% MRE

UB = 6.33 % upper bound

1  We might, for example, measure component latency as an ag
gate of component execution time and component wait tim
each of which can be separately measured.

2  The correction for a systematic error is the negative of the m
sured error.

Y f X1 X2 … XN, , ,( )=

y f x1 x2 … xN, , ,( )=
uc y( )
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In this case, then, the standard uncertainty of component latency y

is . Clearly, the computation is more

unpleasant in situations where the measurands are correlated, for
example as might be the case if latency were sensitive to variable
heap size and execution duration. Finding all such significant inter-
actions is no trivial matter. Still, making explicit and accommodat-
ing measurement uncertainty in the description of empirical
component properties is no more onerous than experimental mea-
surement in any empirical science.

Property Theory Uncertainty.   In principle, the generality of
 ought to apply equally to assemblies of

components as to components themselves because a predicted
assembly property is a function of measured component properties,
which are subject to uncertainty. In fact, this formulation is quite
consistent with the canonical property theory described in Figure
1: substituting Y for p, and allowing {X1, X2, ..., Xn} = Cp ∪ E,
gives us the same formulations, but with one important distinction:
the canonical property theory includes a term to denote the patterns
of runtime (control and data passing) interaction among compo-
nents. It is an article of faith in the software architecture research
community, perhaps not sufficiently tested by empirical means,
that patterns of component interaction will influence assembly
properties. In any event, quantifying the impact on assembly prop-
erties of patterns of interaction is a significant challenge, although
some work has been done in this area [1].

The law of uncertainty propagation assumes continuous functions,
but this is not always the case for property theories. The latency
property theory we developed in our lab experiment is one such
discontinuous example. Monte Carlo simulation can be used as an
empirical approach to measure uncertainty propagation in such cir-
cumstances. Given the probability density functions for each com-
ponent property, we can repeatedly generate random values for
component properties in the property theory. This will yield a sam-
ple output from which we can obtain average and standard uncer-
tainty. This is work that we have not yet undertaken.

5.2 Bounded Design Space
The inferential labels associated with property theories raises an
interesting question: how can we be sure that the sample of assem-
blies used is a representative, random sample of possible assem-
blies? In our research, we cannot undertake an enumerative study
of all possible assemblies—the design space—since, among other
reasons, the property theory must work for all suitably labeled
components, even those that have yet to be developed. Instead, we
must undertake an analytic study of the design space. 

In an analytic study, we must define the design space, and from
this select a random sample. In our laboratory experiment, assem-
blies were constructed using a component model loosely based
upon the pipe and filter style [3]. We were able to exploit these
style rules to define various dimensions of variation—number of
input and output connectors, number of instances of each type of
component, and so forth—and thereby sketch the outlines of the
design space. Using these variations, we were able to generate the
thirty pseudo-random assemblies referred to in Table 1. This
approach will not scale to more general component models, how-
ever; it is also questionable that automatically generated but non-

sensical assemblies constitute a representative sample. More
ensuring that the generated assemblies are semantically mea
ful reduces the problem to one of automatic programming, som
thing beyond the scope of our ambition.

We have only made tentative steps in developing our understa
ing of how to analytically characterize the design space, and h
to draw a random sample from this space. At this point we ha
only two conjectures. The first is that a component model that p
vides well-defined and restricted rules for allowable patterns
component interaction is likely to be better suited for statistic
analysis than a wholly unconstrained component model. The s
ond is that product line settings may augment a compon
model’s structure-oriented rules with rules governing seman
variation, i.e., product feature variation [2]. 

More work is needed here before we can say that the founda
for labeling property theories has been established.

6. DESIRABLE ASPECTS OF STANDARD 
LABELS
We have discussed the statistical basis for standard labels and 
tified several standard statistical models that can be used des
tively, inferentially, normatively, and informatively. Before closing
we observe two other features that we think standard labels ou
to include.

6.1 Assumption Disclosure
The best statistical analysis is only as effective as our faith (tru
in that analysis, and in our ability to reap the benefits of inferen
statistics in our own projects and environments. Both require t
the labels contain (or make visible) additional kinds of data th
already discussed.

• The data that was used to produce the statistical labels sh
be transparent; the labels must be independently verifiable.

• The conditions under which the labels are valid must be tra
parent to the engineer; this includes but goes beyond a des
tion of the design space.

In short, the labels must supply whatever information is necess
to support the dual objectives of engendering trust, and provid
useful engineering data.

6.2 Dynamic Labels
It is perhaps inevitable that standard labels will not provide just 
right information to consumers. It would be useful if labels cou
support, where possible, late binding of values to properties, 
also bounds or probabilities to intervals. We refer to this 
dynamic labeling. 

• In our laboratory experiment we deferred the measuremen
component latency to component deployment; acquiring th
latency properties was part of the component installation p
cess. This required packaging of test data and benchmark
code along with the component.

• Although we have not done so, it is also possible to bundle 
tistical data with the component. This would allow consume
for example, to specify performance norms and compute 

uc y( ) u
2

x1( ) u
2

x2( )+=

Y f X1 X2 … XN, , ,( )=
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g 
derived confidence interval. More generally, data could be pro-
vided with components to support a range of statical analyses.

While such “gadgetry” is not of fundamental importance to
develop techniques for statistical labeling, they can facilitate the
introduction of these techniques in practice.
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