
Probabilistic Analysis for Component Reliability
Composition �

Dave Mason
Ryerson University
350 Victoria Street

Toronto, Ontario, Canada

dmason@sarg.ryerson.ca

ABSTRACT
One of the desirable properties of predictable assembly is
reliability. Given reliability and transformation functions for
components, it is possible to accurately compose reliabilities.

Currently the transformations are limited in their domain of
applicability, but we are working to extend their domain.

Categories and Subject Descriptors
D.2 [Software]: Software Engineering

1. INTRODUCTION
Predictable assembly is the activity of predicting proper-

ties of assemblies of components prior to actually acquiring
the components. One of the many properties of interest is
reliability. That is, given a set of components with known

reliability, predict the reliability of the assembly.
The �rst problem is to accurately characterize the relia-

bility of the components of which the assembly will be com-
posed. Unfortunately this cannot be treated as a simple
number, but must be a function of the component input.
The second problem is a calculus for composing the com-

ponent reliabilities so as to calculate the assembly reliability.
Both parts of the problem are computationally expensive,

but are amenable to parallelism, so have the potential to
be practical despite the cost. A larger problem with the
technique is that it is only currently applicable to a limited
problem domain; we are working to extend the application

domain.

2. COMPONENT RELIABILITY
Reliability has long been considered as a number between

0 and 1 assigned to the execution of a program in a particu-
lar environment for a given amount of time. While this may

be acceptable in measuring a complete system, it clearly is

�

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CBSE Orlando, FL, USA
Copyright 2002 ACM X-XXXXX-XX-X/XX/XX ... $5.00.

not applicable for a component that is intended for incorpo-
ration into an assembly where the environment is unknown.
To talk about reliability in this context, a component's

reliability must be expressed as a function from an input
distribution or operational pro�le to a number between 0

and 1, as described in [2]. This allows the reliability to be
determined however the component is used in an assembly.
Generating the paths and reliabilities requires access to

the original programs, however once they have been gen-
erated they can be distributed to component users with-
out providing access to the program. This allows the users

to characterize the reliability of the components in their
particular environment (with their operational pro�le) and
thereby determine the reliability of their system before hav-
ing access to the component.

2.1 Path Generation
Our approach is to generate the paths through the compo-

nent. Since all of the elements of the input that are selected
by the conditionals that de�ne the path will execute exactly
the same sequence of instructions. If they are further par-
titioned by the speci�cation, the resulting subdomains will
have a common speci�cation and a common implementa-

tion, and thus form a continuous domain of reliability. This
is not to say that all points in the domain will have identical
reliability, but that there is a continuity whereby a statistical
sampling of the domain will produce a meaningful measure
of reliability. This is related to [4], but with the path do-
mains further restricted so as to guarantee that all points in

the same domain are executed by exactly the same sequence
of instructions and that therefore sampling of points within
that domain is a statistically valid approach.
The next step is to identify paths that lead to failures

such as divide-by-zero, arithmetic overow, etc. and desig-

nate their domain as failing. Of those that are not obviously
failing, the next step is to sample the implementation and
speci�cation so as to assign a failure factor. There are sev-
eral special cases that can allow direct determination of the
reliability for some domains.
The result of this process is a set of domains associated

with paths and their associated failure factor. Then, given
an input distribution, the reliability of the component with
that distribution is easily calculated.

2.2 Infinite Numbers of Paths
Of course, there may be a huge, or even in�nite, number

of paths for a given component. However, with the use of

Probability Density Functions (see section 3), it is possible

to generate the paths in frequency order based on the in-
put distribution. This means that the paths that have the
largest contribution to the reliability are generated �rst. By
assuming that all the paths that have not yet been gener-
ated are failing, a conservative approximation to the reli-
ability will be available from very early on in the process

of generating the paths. As more paths are generated, the
approximation will asymptotically approach the true relia-
bility.
Furthermore, the input distribution used to generate the

paths can change over time. Once a path is generated, there
is no need to generate it again. So the component developer

can start with an arbitrary distribution, and then modify it
as time goes on to reect the actual usage in customers' sys-
tems. The more accurate the initial distribution, the faster
the meaningful set of paths will be produced.

3. PROBABILITY DENSITY FUNCTIONS
Simply having a reliability function would be acceptable

if there was only a single component in our assembly for
which we needed to determine a reliability. In practice, of
course, each component transforms its input (proportional
to its distribution) and produces outputs with their own

distributions, which become the input distribution for the
components that follow.
In [2] the input to the reliability function is described as

a histogram. Unfortunately as each component transforms
its input, the resulting distribution is not a histogram ex-

cept in the extreme expression as a point-wise histogram,
which is computationally intractable. [3] presents a prelimi-
nary treatment of the math required to work with the input
distribution as Probability Density Functions.
A Probability Density Function is a positive function with

an integral of 1. The input distribution to the component

will be expressed as a Probability Density Function for each
of the parameters to the component. For our purposes the
range of each Probability Density Function will be the set of
all possible values for that parameter. This is the maximum
number of independent variables for the component, but it
is possible that the number will be smaller, as some variables

may be functions of others.
It is possible to de�ne Probability Density Functions for

each operation of the programming language. The PDF for
addition is:

Px+y(z) =

Z
Px;y(z � y; y)dy:

The form for addition can be extended to any dyadic left-
invertible function (such that: f�1(f(x; y); y) = x) as:

Pf(x;y)(z) =

Z
Px;y(f

�1
(z; y); y)

���� ddz f�1(z; y)
���� dy:

Similarly any relation R has a PDF:

PxRy(true) =
R �

Px;y(u; v); when uRv;
0; otherwise:

�
du dv;

PxRy(false)=1� PxRy(true):

The relations are used to determine the probability of fol-
lowing any particular path through the component, based

on the values of the variables.

4. COMPONENT PATH ANALYSIS
We are extending a Scheme[1] interpreter to perform ab-

stract interpretation of functions in order to determine the

paths.

+ - / * < = > <> <= >=

All of these operations are extended to operate on PDF val-
ues.

(pdf-eval callback function arguments...)

This performs an abstract interpretation of the function,
with the arguments (if provided). As paths are recognized,

the callback is called with the frequency of that path (with
the provided arguments) and the variant information for
that path. That callback can provide the variant to another
program to characterize the reliability of the path, add it to
a database, etc.

(pdf-discrete start end step)

This generates a discrete PDF to provide as parameters for
pdf-eval or pdf-get-coverage.

(pdf-get-coverage variant arguments...)

This allows the callback function to calculate the frequency
of a variant with a di�erent set of arguments.

(pdf-get-variant variant)

This allows the callback function to get a list value repre-
senting the path calculation and the predicate.
Here is a very simple example:

(pdf-eval (lambda (freq variant)

(display (cons freq

(pdf-get-variant variant)))

(newline))

(lambda (x)

(if (< (/ 20 x) 3)

x

3))

(pdf-discrete (- 2) 6 2))

which, when run, produces:

(0.200000 (and (= x 0))

<fault:divide by zero>)

(0.600000 (and (<> x 0) (>= (/ 20 x) 3))

3)

(0.200000 (and (<> x 0) (< (/ 20 x) 3))

x)

which shows the 3 path domains in this function and for
each one the frequency with the provided parameters (in
this example: (pdf-discrete (- 2) 6 2)), the predicate

that identi�es the path, and the calculation of the path.
Note that fault paths are provided immediately, but that
other paths are provided in frequency order.

4.1 Component-Writer’s Role
The role of the component-writer is to:

� produce the component: the current implementation
is in Scheme, but there is nothing intrinsic about the
choice - implementations for other languages could be
built, although a safe language would be preferable;

� perform the abstract interpretation: this is fairly au-
tomatic, and could be spread over a whole set of ma-

chines to run in parallel;

� characterize the reliability of each domain: this means

taking the intersection of the speci�cation and the
predicate generated for the path and then comparing
the speci�cation and the implementation - either struc-
turally or by sampling - this can also be spread over a
set of machines.

5. COMPONENT ASSEMBLY
Components are assembled using a calculus somewhat

similar to [2], except with the transformation and reliability
functions expressed in terms of Probability Density Func-
tions. This means that an abstract interpretation of the

system is performed where values may be PDFs as well as
the ground values of the language and that in addition to
PDF transformations for simple operations, there will be
PDF transformations for components.
For each execution of a component, the reliability will be

calculated using the reliability function for the component

and the total reliability of the program will be the reliability
of the components, weighted by the likelihood of each path
being executed.
To determine the operational pro�le of various compo-

nents in the system, it probably will be necessary to have
an implementation of each component. This doesn't nec-

essarily need to be fast, but needs to accurately reect the
operation of the component. Because of the way the paths
are generated, a slow version of the function can be created
from the variants generated so far:

(lambda (x)

(cond

((and (= x 0))

<fault:divide by zero>)

((and (<> x 0) (>= (/ 20 x) 3))

3)

((and (<> x 0) (< (/ 20 x) 3))

x)

(else

<fault:not implemented>)))

5.1 Component-User’s Role
The role of the component-user is to:

� specify the component;

� farm-out the component creation;

� determine the operational pro�le for the system;

� build the system glue;

� ow the operational pro�le through the system to get
the operational pro�le for each component, and then
use the reliability function provided by the component-
writer to determine the overall system reliability.

6. LIMITATIONS
There are two limitations of the work in its current state:

computational complexity, and domain of applicability.

6.1 Computational Complexity
Calculation with Probability Density Functions is expo-

nential in the number of independent variables to each com-

ponent and in the operational path-length of the component.

In the domain of applicability, the number of independent

variables is likely to be small, and the operational path-
length (the length of the dependency graph of operations)
will likely also not be extreme.
This situation is somewhat ameliorated by the fact that

the computations are highly amenable to parallelism. A
component manufacturer could organize a \path farm" to

generate the program paths and to verify the correctness of
each discovered path.

6.2 Domain of Applicability
The other problem is that currently the Probability Den-

sity Functions are range-based for scalar variables. This

is not intrinsic to PDFs, but considerable research will be
required to discover PDFs to support arrays, strings, and
streams.

7. CONCLUSIONS
One of the most important properties of programs is their

reliability or correctness. This will be, if anything, even
more important when assembling components into assem-

blies. This paper outlines an approach to producing pre-
dictable reliability from such an assembly, at least in certain
contexts.

8. REFERENCES
[1] R. K. Dybvig. The Scheme Programming Language.

Prentice-Hall, Toronto, Ontario, 2nd edition, 1996.

[2] D. Hamlet, D. Mason, and D. Woit. Theory of software

component reliability. In Proc. 23rd International

Conference on Software Engineering (ICSE'2001),
Toronto, Canada, May 2001.

[3] D. Mason. Probability density functions in program

analysis. In 4th ICSE Workshop on Component-Based

Software Engineering (CBSE'2001), Toronto, Canada,
May 2001.

[4] D. J. Richardson and L. A. Clarke. Partition analysis:

A method combining testing and veri�cation. IEEE
Transactions on Software Engineering,
11(12):1477{1490, Dec. 1985.

