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ABSTRACT

Many software projects are based on the integration of inde-
pendently designed software components that are acquired
on the market rather than developed within the project
itself. This type of components is well known as COTS
(Commercial-Off-The-Shelf) components. Nowadays compo-
nent based technologies (COM/ DCOM, Sun’s JavaBeans,
CORBA) provide interoperability and composition mecha-
nisms that cannot solve the COTS component assembling
problem in an automatic way. Notably, in the context of
component based concurrent systems, the COTS component
integration may cause deadlocks or other software anomalies
within the system. In this position paper, we present our
approach to contribute to the research in components assem-
bly. Our long term, goal is to develop a tool that synthesize
the assembling code to glue together a set of COTS com-
ponents. This glue code must be synthesized in such a way
that (a well defined set of) functional properties required
for the composed system are automatically guaranteed. We
propose an architectural connector-based approach for the
assembly problem. The basic idea is to build applications by
assuming a defined architectural style. Then, we compose
a system in such a way that it is possible to check whether
and why the system presents some software anomalies (e.g.:
deadlock, livelock). Based on the analysis results a recovery
policy which can avoid the anomalies and obtain a correct
assembly can be performed.

1. INTRODUCTION

Many software projects are based on the integration of inde-
pendently designed software components that are acquired
on the market rather than developed within the project
itself. This type of components is well known as COTS
(Commercial-Off-The-Shelf) components. Nowadays compo-
nent based technologies (COM/ DCOM, Sun’s JavaBeans,
CORBA) provide interoperability and composition mecha-
nisms that cannot solve the COTS component assembling
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problem in an automatic way. Notably, in the context of
component based concurrent systems, COTS components
integration may cause deadlocks or other software anomalies
within the system [15, 2, 11, 12]. The use of COT'S software
components in system construction presents new challenges
to system architects and designers [4]. Building a system
from a set of COTS components introduces a specified set
of problems. Many of these problems arise because of the
nature of COTS components. They are truly black-box and
developers have no method of looking inside the box. This
limit is coupled with an insufficient behavioral specification
of the component which does not allow to understand the
component interaction behavior in a multi-component sys-
tem. Vendors do not provide, with a COTS component, a
behavioral specification that is correct and complete with
respect to the interaction behavior; they provide an infor-
mal specification that is often expressed in natural language.
Even if the vendor provides a formal behavioral specifica-
tion, it refers to the component in a stand-alone context
and it specifies nothing about the component interaction
behavior. Component assembling can result in architectural
mismatches when trying to integrate components with in-
compatible interaction behavior [5]. Thus if we want to
assure that a component based system validates specified
dynamic properties, we must refer to the component inter-
action behavior. In this context, the notion of software ar-
chitecture assumes a key role since it represents the reference
skeleton used to compose components and let them interact.
In the software architecture domain, the interaction among
the components is represented by the notion of software con-
nector. Analyzing the actual commercial component based
architectural models, connectors often are explicit entities
at an architectural level of the system. Even if connectors
are intangible entities in a system implementation, this does
not prevent us from implementing a component which pro-
vides the services of a specific connector (e.g.: coordination
connector, communication connector, persistence connector,
load balancing connector) to the other components of the
system.

Since some time we have been working in the field of com-
ponent assembly. Our aim is to analyze and fix dynamic
behavioral problems that can arise from component com-
position. So far, for dynamic properties we concentrated
on deadlock analysis while for actual component setting we
considered COM/DCOM. In this position paper we briefly
sketch our current and future research directions which at-



tempt to contribute to the research in predictable assembly.
Our research is characterized by 4 general guidelines:

e extend the analysis of component based systems to
general safety and liveness properties;

e provide recovery strategies besides property analysis;
e make the whole approach as automatic as possible;

e validate the approach on several concrete component
based architectural models.

We propose an architectural connector-based approach to
the assembly problem. This approach is based on the the-
oretical framework introduced in [8]. The idea there is to
build applications by assuming a defined architectural style,
namely a modified version of the C2 architectural style [13].
We compose a system in such a way that it is possible to
check whether and why the system presents some software
anomalies, namely deadlock. At present we have developed
a limited portion of the proposed approach [9, 10]. To be
more explicit in describing our approach, we can recast what
summarized above in the context of the COM/DCOM com-
ponent based architectural model. We want to derive, in an
automatic way, directly from the COTS (black-box) compo-
nents, the code that implements a new component to insert
in the composed system. This new component implements
an explicit software connector. Since we are interested in
behavioral properties of the assembled system we require
this code to be automatically derived in such a way that the
functional properties of the composed system are satisfied.
At present we assume that there is someone which give us
the behavioral specification of the components and we limit
ourselves to only one behavioral property of the assembled
system namely deadlock freeness. With these two assump-
tions we are able to develop an automatic tool which derives
the assembling code for a set of COM/DCOM components
to obtain a deadlock-free system. The method starts off a
set of components, and builds a connector following the ref-
erence style constraints. Components are enriched with ad-
ditional information on their dynamic behavior which takes
the form of graphs. Then deadlock analysis is performed.
If the synthesized connector contains deadlock behaviors,
these are removed. Depending on the kind of deadlock, this
is enough to obtain a deadlock-free version of the system.
Otherwise, the deadlock is due to some component internal
behavior and cannot be fixed without directly operating on
the component code. This technique avoids the deadlock by
using COM composition mechanisms to insert the synthe-
sized connector within the system while letting the system
COM components unmodified. In Section 2 we mention how
we intend to deal with other behavioral properties. We also
discuss a possible way to avoid the strong assumption about
the fact that behavioral specification of the components is
someway provided.

The position paper is organized as follows. In Section 2 we
introduce the problem in the more general setting of generic
behavioral properties. We also address the issue of auto-
matically derive the behavioral specification for a compo-
nent directly from the component itself. Some notions that
are important to understand the paper are also presented.

Section 3 presents the technique to allow connectors synthe-
sis [8].

2. PROBLEM DESCRIPTION AND BACK-
GROUND

Building on our experience as described in Section 1, the
problem we want to treat is similar to the predictable as-
sembly problem. In [7], the predictable assembly problem is
described as follows: Given a set of components C, predict
property P of an assembly A of these components. In our
setting this problem can be rephrased as follows: Given a
set of components C and a set of properties P automatically
derive an assembly A of these components which satisfies
every property in P.

The basic ingredients of this problem are: i) the type of
components we refer to, ii) the type of properties we want
to check and iii) the type of systems we want to build. We
consider COTS components which are truly black-box com-
ponents. The properties we want to check are functional
properties which describe unexpected behaviors of the sys-
tem. The assembly A depends on the constraints induced by
the architectural model the system is based on. The com-
posed systems that we consider are component-based dis-
tributed systems. The present architectural model, which
defines the rules used to build the composed, is a modified
version of the C2 architectural style. This modified version
of C2 architectural style is called CBA (i.e. Connector Based
Architecture) style and it is described in detail in [8]. Here
we briefly summarize the main differences between C2 style
and CBA style:

e synchronous message passing;
e connectors cannot directly communicate;

e connectors are only routing devices, without any fil-
tering policies;

e connectors have a strictly sequential input-output be-
havior.

The precedent items represent the CBA style distinguished
characteristics that we do not find in C2. Rationale behind
these choices can be found in [8].

2.1 Beyond deadlock

In [9] we only address a specific behavioral property that a
composed system must hold to work correctly, namely Dead-
lock Freeness. In [9] we have explained the approach by
providing an example of his application. This example is an
instance of the well known Dining Philosophers problem [16]
in which we consider two philosophers and two forks. We
now build on that example in order to discuss other possible
behavioral property that a designer might wish to guarantee.
We present the component structure of the dining philoso-
phers problem in Figure 1.

There are 4 components:

e the first fork (Forkl);
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Figure 1: Architectural View of the Dining Philoso-
phers Problem

e the second fork (Fork2);
e the first philosopher (Philosopherl);

e the second philosopher (Philosopher2).

The forks components can iteratively wait for a request, give
the fork, and then wait for the fork to be released. The
philosophers can non-deterministically choose to ask for a
fork, get it, then ask for the other, eat and then release the
forks. Since a philosopher to eat needs both the forks it is
obvious that in the following scenario a deadlock could arise:

1. component Philosopherl requests and gets the resource
of component Forkl;

2. component Philosopher2 requests and gets the resource
of component Fork2;

3. component Philosopherl requests and waits for the re-
source of component Fork2;

4. component Philosopher2 requests and waits for the re-
source of component Forkl;

in this scenario Philosopherl is waiting for Fork2 release.
Since Philosopher2 gets the resource of Fork2, this event
can be caused only by Philosopher2 who is waiting for Fork1
release. Since Philosopherl gets the resource of Forkl, this
event can be caused only by Philosopherl. Thus each system
component is waiting for an event that only another system
component can cause. It means a deadlock.

Now we present the connector based component structure
of the dining philosophers problem in Figure 2. The role
of the connector is to route every component request to the
request receiver component. Then it returns the request re-
sponse to the component which fired the request. Through
the routing policy it implements, the connector can decide
to accept or to reject a specific request. In our approach
we automatically synthesize a model of the behavior of the
connector which contains all the possible request routing
policies. Then we perform analysis of deadlocks and recov-
ery. The deadlocks analysis step consists of searching for
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e
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Figure 2: Architectural View of the Connector-
based Dining Philosophers Problem

stop nodes in the connector behavioral graph. These nodes
represent states in which the system does not perform any
action. Thus stop nodes represent deadlock states. The
deadlocks recovery step consists of cutting the connector
graph branches that lead to stop nodes.

It is worthwhile noticing that before the possible deadlocks
are fixed the connector contains all possible composed sys-
tem behaviors. This means that it contains all possible
routing policies. A designer can now think not only of a
deadlock-free routing policy but of a precise scheduling one.
For instance he might want the philosophers to eat in turn or
that the Philosopherl always eats twice before Philosopher2.
At present we are working in this direction in order to extend
our approach [9] so that it can be synthesized a connector
that implements a particular (deadlock-free) routing policy.
This means that we could allow a designer to assign a pre-
cise scheduling policy to the connector. The approaches we
are experimenting are based on two existent line of research
in the program verification area:

e referring to the usual model checking approach [3], we
can think of defining the properties which the system
must not hold (i.e. unexpected behaviors of the sys-
tem) by using some kind of temporal logic. In this
way we can specify the set P of properties that de-
scribe the unexpected behaviors of the system. Then
referring to the automata theoretic approach to pro-
gram verification [3], the idea is to implement a trans-
lation function from a property (i.e. temporal logic
formula) to an automata, namely a Generalized Biichi
Automata [3]. By automatically applying this transla-
tion function, for any property p; € P, we can obtain
a set of property graphs. For any property graph if it
suitably matches with connector graph portions then
this means that in those portions the connector does
not satisfy the requested routing policy. Therefore,
the connector contains a specified unexpected behav-
ior. The recovery policy simply consists of cutting the
subgraphs that match with the property graph. In this
way we can guarantee the desired behavior;

e other model checking verification approaches can be



derived referring to the supervisory control theory [1].
The theory provides algorithms for the automatic syn-
thesis of supervisory controllers from their specifica-
tions. We think that these algorithms can be adapted
to the automatic synthesis of software connectors.

2.2 Synthesizingdynamicinformation off black-

box components

In [9] we assume that someone provides the components be-
havioral specification. This is a strong assumption. In order
to treat our version of the predictable assembly problem in a
real scale context we must try to avoid it. Black-box inspec-
tion techniques could be developed to automatically derive
the component behavioral specification from its binary code.
In literature there are many techniques to inspect a black-
box component [17, 6]. The main problem of these tech-
niques is that they are not completely automatic. Our goal
is to device methods to increase the automation of these
techniques in our component based setting. Moreover we
must extend them in order to derive a behavioral specifica-
tion that reflects the constraints of the architectural model
we refer to. This means that the inspection technique can
benefit of the knowledge of the type of components and ar-
chitectural interaction model we are dealing with. In any
case we do not expect to derive a complete specification
but only a partial one. However, this partial specification
together with the component documentation could be a sig-
nificant help to derive the complete dynamic behavior spec-
ification of the component. It is worthwhile noticing that
in many cases component documentation can also be quite
expressive taking the form of message sequence charts [15].
In this way an analysis and synthesis tool which derives the
components integration code (the connector) directly from
components acquired on the market could be derived. Al-
though specifically directed to the discovery of components
architectural behavior, this line of research has a large in-
tersection with research in component testing from which it
can greatly benefit.

3. CONNECTOR SYNTHESIS

In this section we informally describe how we could extend
our current approach towards the definition of a more gen-
eral synthesis environment. We describe the environment
using Figure 3.

As we can see from Figure 3, the tool first inspects the
components (intended as Black-box component) in order to
derive the behavioral specification code. Then it gets in
input the behavioral specification code for all the compo-
nents of the system. This specification code is expressed
by using a language to describe the communication between
concurrent processes. We have chosen the CSS (Calculus
of Communicating Systems) language because it allows an
easy translation from the behavioral specification code to
a data structure that takes the form of automata. This
automata is the AC-Graph of a component. A formal def-
inition of AC-Graph is in [8]. Informally we can say that
an AC-Graph for a component C describes the actual be-
havior of the component. The term actual emphasizes the
difference between component behavior and the intended, or
assumed, behavior of the environment. AC-Graphs model
components in an intuitive way. Kach node represents a

state of the component and the root node represents its ini-
tial state. Each arc represents the possible transition into a
new state where the transition label is the action performed
by the component. From the AC graphs the tool derives the
corresponding AS (ASsumption) graphs. These graphs de-
scribe the interaction behavior of each component with the
external environment. First, we wish to derive from a com-
ponent behavior the requirements on its environment that
guarantee specified properties. The AS-Graph is different
from the corresponding AC-Graph only in the arcs labels.
In fact these labels are symmetric since they model the en-
vironment as each component expects it. Given the CBA
style, the component environment can only be represented
by one or more connectors, thus we refine the definition of
AS-Graph into a new graph, the EX-Graph, that represents
the behavior that the component expects from the connec-
tor. Each component EX-Graph represents a partial view
of the connector expected behavior. It is partial since it
only reflects the expectations of a single component. The
global connector behavior will be derived by taking into ac-
count all the EX-graphs. This will be done through a sort
of unification algorithm [8]. At this point the tool builds the
property graph for any specified property. Then it verifies,
for any property graph, if there are structural mismatches
between some portion of connector graph and the considered
property graph. Finally the tool verifies if the connector en-
sures the expected behavior for all components connected to
it. In this last step the tool compares any AS-Graph with
a corresponding connector graph portion by using a sort of
observational equivalence [8].

The following are the steps of the algorithm used to build
the connector graph:

1. let K be the connector to build;

2. for each component C; build the EX-Graph EX; for
Ci;

3. if it is impossible to unify the £X; for each component
C; then exit(FAILURE);

4. for each property p; in the set P of properties to vali-
date, build the PR-Graph PR; for p;;

5. if there are some structural mismatches between the
PR; for each property p; and a portion (or some por-
tions) of the transition graph for K then delete the
branches that form these portions of the transition
graph of K;

6. for each component C; if CBSimulation(AS;,CB;)
does not successfully terminate then exit(FAILURE);

7. exit(SUCCESS);

where:

AS; is the AS-Graph of the component C; which is con-
nected to the connector; PR; is the PR-Graph for the prop-
erty p;. We can informally imagine the PR-Graph of p; as
a graph with the same structure of the connector graph and
that models the property which represents an unexpected
behavior of the system; CB; is the CB-Graph [8] for C;.
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Figure 3: Automatic Synthesis Tool

This graph represents the portion of the connector graph
that communicates with the component C;.
CBSimulation(AS;, CB;) successfully terminates if the ex-
pected behavior of the environment for the component Cj
(AS;) is CB-simulated [8] from the portion of the connector
behavior regarding the communication with a given compo-
nent (C;). Informally CB-Simulation is a notion of simu-
lation based on observational equivalence [14]. It is needed
to perform step 6 of the algorithm because independently of
the type of the unexpected behavior that we want to avoid,
the connector component must ensure the expected behav-
ior for all components connected to it. In this way we are
guaranteed that the system will not exhibit unexpected be-
haviors.

At this point we have obtained the connector graph that
models the behavior of the composed system. Its behavior
avoids all the unexpected behaviors specified by the set P of
behavioral properties. Thus the tool ends its activity auto-
matically deriving the code of the services provided by the
connector component. Obviously these services implement
the requests routing policy in order to avoid every unex-
pected behavior specified in P. Informally in this step the
tool, by visiting the connector graph, should automatically
derive when and how the connector delegates requests from
a connected component to another one. These request del-
egations are conditioned in order to implement the correct
routing policy.

4. CONCLUSION

In this position paper we have briefly described our expe-
rience in treating a restricted instance of the predictable
assembly problem. We have described an architectural ap-

proach to connector synthesis for a deadlock-free component
based architecture which we validated in the concrete set-
ting of COM/DCOM. Based on that experience, we propose
how to extend the analysis of component based systems to
general safety and liveness properties. Our approach is ori-
ented to recovery strategies besides property analysis in such
a way that the whole approach can be as automatic as pos-
sible. However, the scenario we have depicted depends on
a number of results and problems solutions that we have
not mentioned. We have not specified the class of safety
and liveness property we intend to deal with. This obvi-
ously is a preliminary step since it will not be possible to
successfully deal with any dynamic property. We have not
analyzed the relationship between property and interaction
architecture. We simply stuck to the CBA one. We have
not considered real component based contexts, which can
greatly influence/constrain many of the above mentioned
choices. All these dimensions have to be properly taken into
consideration in order to propose feasible instances of our
synthesis environment.
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