
5th ICSE Workshop on Component-Based Software
Engineering:

Benchmarks for Predictable Assembly

Ivica Crnkovic1, Heinz Schmidt2, Judith Stafford3, Kurt Wallnau3

1Mälardalen University, Department of Computer Engineering, Sweden, ivica.crnkovic@mdh.se
2Monash University, Australia, Heinz.Schmidt@csse.monash.edu.au

3Software Engineering Institute, Carnegie Mellon University, USA, {jas, kcw}@sei.cmu.edu

Abstract

This paper gives a short overview of the 5th ICSE
Workshop on Component-based Software Engineering
held at 24th International Conference on Software
Engineering. The workshop brought together researchers
and practitioners from three communities: component
technology, software architecture, and software
certification. The primary goal of the workshop was to
continue clarifying the concepts, identifying the main
challenges and findings of predictable assembly of
certifiable software components. To focus the workshop
on the topic, a call for papers was accompanied by a white
paper, which provided a framework for invited papers and
the workshop itself. The paper gives a comprehensive
summary of the position papers, of the workshop, its
findings and its results.

1 Introduction

The fifth CBSE (CBSE5) workshop held at the 24th
International Conference of Software Engineering (ICSE)
is a direct continuation of the fourth CBSE workshop
(CBSE4) [1,2,3]. CBSE4 focused on reasoning about
properties of assemblies from properties of components
and their interactions. Researchers from three
communities: component technology, software
architecture, and software certification, joined the
workshop, resulting in lively discussion and increased
understanding of how the domains can be mutually
informing. The need for a model problem, to be utilized
for further research of different aspects of predictable
assembly, was identified. The specification of model
problems was discussed at a follow-up workshop held at
the Carnegie Mellon University’s Software Engineering
Institute in Pittsburgh, U.S.A. The objectives of CBSE5
were defined at the SEI workshop.

The aim of CBSE5 was to more deeply study the
problem of predictable assembly, focusing on the sub-
problem of compositional reasoning, and benchmarks of
the effectiveness of compositional reasoning. Submitters
were asked to address the community model problem,
either directly or indirectly by adopting the vocabulary of
its specification.

This rest of this paper is organized as follows:
Section two gives an overview of the workshop purpose
and goal. Section three describes the workshop sessions.
The paper concludes with description of future plans.

2 The Aim of the Workshop

The premise of the CBSE workshop series is that the
long-term success of component-based development
depends on the ability to predict the quality of
component-based systems; however, developers are
currently unable to make such predictions. Further
research is needed in the area of predictable assembly to
develop a component composition theory for reasoning
about both the functional and extra-functional properties
of component assemblies based on the properties of
components.

 Issues related to developing a composition theory
include determining what properties are of interest to
developers and users of components, how to predict the
properties of assemblies, how to measure properties of
components, how to verify the measurements, and how to
communicate the property values to component users.
Resolving these issues requires collaborative work of
researchers in several domains including compositional
reasoning, composition languages, component trust and
certification, software architecture, and software
components.

2.1 Workshop Objectives

The solution to the problem of predictable assembly is the
identification and application of a component composition
theory, which is based upon both constructive and
analytic techniques. The primary goal of CBSE5 was to
achieve a better understanding of compositional reasoning
techniques and to test the feasibility of their use through
their application to community model problems.

A composition theory assumes the availability of
information about the properties of components but, in
practice, there is no established method for measuring and
communicating this information. Thus, a secondary goal
of the workshop was to raise issues related to

understanding how to provide this information. Examples
include identification and formal specification of
properties that convey information about component
internals, measurement techniques for assessing the
properties, methods for certifying these measurements,
and methods for communicating the resulting values.

To make the workshop efficient, it was essential to
obtain a clear understanding of what constitutes a problem
of predictable assembly, and what qualities attend to their
solution. A guide for model solutions was available in the
form of a white paper [4] to prospective workshop
participants in which the authors presented a structure and
vocabulary to serve as a basis for the clear understanding.
The white paper outlines the content of a hypothetical
report of a model problem and its solution. It also
introduces a vocabulary of predictable assembly. We
quote an essential definition offered by the white paper:

A problem in predictable assembly is
characterized as a software engineering problem
that can be reduced to the form: Given a set of
components C, predict property P of an assembly
A of these components. At the core, a solution to
such a problem involves a prediction theory that
is based on certain assumptions about the
environment in which the assembly will run and
requires information about the components that
make up the assembly, thus there are many
peripheral issues that reside within the bounds of
research in predictable assembly.

CBSE5 was thematically centered on this definition of
predictable assembly.

2.2 Workshop Organization

The workshop involved more discussion than paper
presentations. For this reason the authors of all papers
made very brief presentations of their work (3 minutes per
paper!). After that the three papers were selected by
voting for presentation in detail.

Based on the presentations and related discussion, the
workshop continued with breakout groups focused on the
following topics:

? ? Component properties and emergent properties;

? ? Component and system reliability; and

? ? Component Containers

The results of these breakout discussions are
summarized in Section 4.

3 Participating in the Workshop

Attendance at the workshop was by invitation, in large
part, based on acceptance of position papers. Submitters
were asked to:

 clearly state the problem area;
 provide an overview of the domain by way of

background;
 describe a family of components associated with the

problem;
 state properties that developers want answered about

an assembly;
 detail a technique for reasoning about the property;
 validate or at least discuss plausibility of validation

of the technique; and
 detail the reasoning technique by way of example.

The following position papers were accepted for the

workshop (the abstracts are presented here, for the full
papers see [5]):

Gary Vecellio, William M. Thomas, and Rob Sanders,
Containers for Predictable Behavior of Component-
based Software

Component developers have limited knowledge of how
their components will be aggregated into applications and
they can not control the deployment and execution
environment. This makes the development of predictable
component-based software a difficult proposition. Adding
services to a software container can help remedy this
problem. This paper discusses how commercial container
technology can be augmented to support more predictable
behavior of component compositions. Our approach
consists of augmenting an open source Enterprise
JavaBeans container and server with assertion
capabilities. We discuss how these new capabilities can
be used at load and initialization time to verify that a
composition meets some policy constraints and at runtime
to verify that the composition is maintaining critical
properties.

Paola Inverardi and Massimo Tivoli, Correct and
automatic assembly of COTS components: an
architectural approach

Many software projects are base on the integration of
independently designed software components that are
acquired on the marker rather than developed within the
project itself. This type of components is well known
COTS components. Nowadays component-based
technologies COM/DCOM, Sun’s JavaBeans, CORBA)
provide interoperability and composition mechanisms that
cannot solve COTS component assembling problem in an
automatic way. Notably, in the context of component-
based concurrent systems, the COTS component

integration may cause deadlocks or other software
anomalies within the system. In this position paper, we
present our approach to contribute top the research in
components assembly. Our long term goal is to develop a
tool that synthesis the assembling code to glue together a
set of COTS components. This glue code must be
synthesized in such a way that (as well as defined set of)
functional properties required for the composed system
are automatically guaranteed. We propose an architectural
connector-based approach for the assembly problem. The
basic idea is to build applications by assuming a defined
architectural style. Then, we compose a system in such a
way that it is possible to check whether and why the
system presents some anomalies (.e.g. deadlock,
livelock). Based on the analysis results a recovery policy
which can avoid the anomalies and obtain a correct
assembly can be performed.

Judith A. Stafford and John D. McGregor, Issues in
Predicting the Reliability of Composed Components

Availability is one of the most frequently specified quality
attributes for computerized systems and the computation
of availability requires knowledge about the reliability of
the system. Although much research has been devoted to
software system reliability, much work remains to be
done in identifying ways to predict reliability of
assemblies of components. We are designing an
experiment for use as a foundation for creating a
reliability prediction-enabled component technology
(PECT), which is to be used to produce systems that are
predictably reliable by construction; in the course of that
work we have recognized the need to evolve
combinatorial reliability models for use in computing
reliability of assemblies based on the reliabilities of
constituent components. In this paper, we describe and
discuss aspects of current models that need to be adapted
and how they affect the design of our experiment.

Jason O. Hallstrom, Scott M. Pike, and Nigamanth
Sridhar, Iterators Reconsidered

Software developers are eager to increase the scale of
their software products at a rate proportional to the
growth of computing resources. With memory,
bandwidth, and computing power doubling roughly every
eighteen months, development approaches that are not
based on compositional reasoning techniques can not be
used to engineer the systems of tomorrow. The enormous
scale of these projects far outstrips our ability to
understand them using ad-hoc approaches. Industry best
practice recognizes the importance of component reuse,
but the emphasis is weighted heavily on the reuse of
component code, often times neglecting the need to reuse
the effort that went into understanding the component's
behavior. That is, any scalable software engineering

discipline must provide mechanisms for reusing software
components, as well as mechanisms for reusing the
reasoning effort required to use those components. This
paper examines the Iterator pattern with regard to
compositional reasoning. The approach, touted as industry
best practice, is shown to provide sample opportunity for
breaking the principles of encapsulation. These various
hazards are briefly described, and several techniques for
ensuring safe use of the pattern are explored.

Heinz W. Schmidt and Ralf Reussner, Parameterized
Contracts and Adapter Synthesis

Ideal reuse takes a component as it is. However, ideal
reuse is a myth and hardly achieved in practice. More
commonly the software architect modifies, adapts and
reconfigures components. Sometimes complex
synchronizations between several components are
necessary before they can be deployed.

This paper presents some recent results and work in
progress on component adaptation. We develop methods
for identifying incompatibilities and automatic synthesis
of adapters which control components dependent on their
deployment context. Typically such adapters are
considerably smaller than the components themselves.
They belong into the realm of the connectors.

The synthesis of adapters requires compositional
reasoning about extra-functional aspects of component
and system behavior such as the order and timing of
events, the possible matches and mismatches of such
orders or partial orders. Extensions of our work currently
in progress include probabilistic information associated
with behavior specifications capturing usage profiles or
reliability information.

 Using concrete examples we show adapter generation
for mismatching protocols including generation
synchronizing controllers for shared resources. We only
sketch our extensions to deal with reliability.

Shiping Chen, Ian Gorton, Anna Liu, and Yan Liu,
Performance Prediction of COTS Component-based
Enterprise Applications

One of the major problems in building large-scale
enterprise systems is anticipating the performance of the
eventual solution before it has been built. This problem is
especially germane to modern Internet-based e-business
applications, where failure to provide high performance
and scalability can lead to application and business
failure. The fundamental software engineering problem is
compounded by many factors, including application
diversity, architectural trade-offs and options, COTS
component integration requirements, and differences in

performance of various software and hardware
infrastructures. This paper investigates the feasibility of
providing a novel and practical solution to this problem.
The approach as demonstrated, constructs useful models
that act as predictors of the performance for component-
based systems hosted by middleware infrastructures such
as CORBA, COM+ and J2EE.

Dave Mason, Probabilistic Analysis for Component
Reliability Composition

One of the desirable properties of predictable assembly
is reliability. Given reliability and transformation
functions for components, it is possible to accurately
compose reliabilities. Currently the transformations are
limited in their domain of applicability, but we are
working to extend their domain.

Chang Liu and Debra J. Richardson, Specifying
Component Method Properties for Component State
Recovery in RAIC

Redundant Arrays of Independent Components (RAIC)
is a technology that uses groups of similar or identical
distributed components to provide reliable services to
applications. RAIC controllers use the just-in-time
component testing technique to detect component failures.
RAIC also allows components in a redundant array to be
added or removed dynamically at run-time. Component
state recovery techniques are used to bring replacement
components or newly added components up-to-date. Two
types of state recovery techniques are used in RAIC: a
snapshot-based approach and an invocation-history-based
approach. Component method properties are used to
optimize invocation-history-based component state
recovery. This position paper gives a brief overview of
RAIC and discusses the component state recovery
techniques used in RAIC. A proof-of-concept example is
given to illustrate how a problem occurs in a component
is detected and how a replacement component is brought
up-to-date automatically to substitute the fail component.

Gabriel Moreno, Scott Hissam, and Kurt Wallnau,
Statistical Models for Empirical Component
Properties and Assembly-Level Property Predictions:
Toward Standard Labeling

One risk inherent in the use of software components
has been that the behavior of assemblies of components is
discovered only after their integration. The objective of
our work is to enable designers to use known (and
certified) component properties as parameters to models
that can be used to predict assembly-level properties. Our
concern in this paper is with empirical component
properties and compositional reasoning, rather than
formal properties and reasoning. Empirical component

properties must be measured; assessing the effectiveness
of predictions based on these properties also involves
measurement. This, in turn, introduces systematic and
random measurement error. As a consequence, statistical
models are needed to describe empirical component
properties and predictions. In this position paper, we
identify the statistical models that we have found useful in
our research, and which we believe can form a basis for
standard industry labels for component properties and
prediction theories.

Nazareno Aguirre and Tom Maibaum, A Temporal
Logic Approach to Component-Based System
Specification and Reasoning

We propose a language for component-based system
specification and reasoning. This language provides a new
coarse-grained unit of modularization, which, we believe,
allows one to better organize a system specification, and
which admits the definition of (dynamic) reconfiguration
operations. The language is mainly based on temporal
logic as a formalism to describe behavior. Temporal logic
is used to specify both internal behavior of components
and architectural aspects of a system. This provides a
uniform framework to reason about systems, allowing one
to combine properties of components and architectural
properties in a convenient way, even in cases in which the
architecture could change over time. Some constructs
provided by the language can be used to organize
specification in a hierarchical way, which is more suitable
for reasoning. The use of temporal logic provides an
expressive language for stating properties. The powerful
proof calculus associated with the language allows us to
prove properties effectively, taking advantage of the
structure of the specification.

Magnus Larsson, Anders Wall, Christer Norström, and
Ivica Crnkovic, Using Prediction Enabled Technologies
for Embedded Product Line Architectures

Predicting the behavior of a product before it is built
has been a long time struggle, especially for software
based systems. For building software systems there are
few methods that comply with the engineering methods
established from physics where properties of a
construction can be determined before the actual
assembly of a product. By taking the predictable assembly
from certifiable components (PACC) approach our
intention is to define methods to predict certain
properties. We conclude that product line architectures
that build on top of a component technology can be built
in a much more controlled way if the component
technology is prediction enabled. The aim of this position
paper is to investigate how embedded product line
architectures can utilize a prediction-enabled component
technology to build products with known properties. We

present a framework where we can reason about extra-
functional properties in a uniformed way. We illustrate
our approach by an example including the properties end-
to-end deadline and version consistent.

4 Workshop Results and Future Plans

The breakout discussions focused on issues pertaining to
reliability, compositional reasoning, and the role (and
meaning) of “containers” in software component
technology. The working group reports and closing
discussion mirrored this breakout structure, with the
exception that the topic of reliability was broadened to
questions about the meaning of properties, and the
meaning of “emergence.” These highlights of these
discussions are briefly summarized.

4.1 Component and Emergent Properties

Three interesting points were made during this discussion:

1. Property theories, for example those concerning
time, are often in the form of either boundary case
or average case predictions. Boundary conditions
are often simple and easy to verify; on the other
hand, boundary conditions are very difficult to
validate. Average case predictions are the
converse: easily validated, but quite difficult to
verify.

2. All properties of executing software are, in theory,
predictable. This contrasts with the conventional
meaning of “emergence” as equivalent to
“unpredictable.” Instead, emergence occurs with
respect to a particular (set of) property theory(ies).
An observable property that is not predicted by a
theory is emergent with respect to that theory.

3. We expect the real challenges of predictability to
arise as a result of non-orthogonality of property
theories. For example, assume a theory of time
and a theory of reliability, each based on a set of
assumptions. These assumptions, when combined,
may yield emergent properties. A new combined
model that captures this emergence is possible in
theory, but may introduce arbitrary complexity.

4.2 Component Containers

The term ‘container’ or, alternatively, ‘component
container’ has recently been associated with software
component technology. The question posed was whether
‘container’ is a new concept, and, regardless, what role
does it play in predictable assembly?

Several answers were proposed, among which the
following were the most interesting, only a few of which
require elaboration:

? ? Containers are operating systems for software
components, used for managing component life
cycles and access to shared component resources.

? ? Containers are virtual machines that define standards
for component deployment and execution.

? ? Containers are environments that can be used for
formal reasoning, and for defining composition
operators.

? ? Containers are execution environments that provide
services to component implementations.

? ? Containers are scopes for properties. Just as a
component defines a scope for properties (the
component interface), an assembly of components
has properties; this assembly exists within a container
(which can be distributed).

In all of these cases, the general consensus was that
containers, while not a fundamentally new concept, are
not well understood with respect to their role in
predictable assembly.

4.3 Composition

The discussion focused on models of composition. An
assertion was made that a property theory, or reasoning
technique, is compositional if and only if it has an
algebraic model. In this view, component properties are
the carriers of the algebra, and compositionality is
expressed as operators (of arbitrary arity) over this carrier.

After some discussion, it was agreed that being
algebraic is sufficient, but not necessary, for
compositionality. Examples were cited where
compositional reasoning is possible but where no pre-
defined algebra is possible, for example, performance
models that require as input an entire assembly or
topology. In such cases reasoning is still compositional in
that it follows from component properties that are
expressed on the interfaces (boundaries) of components,
but the compositional operator is unique to the assembly.

There was some discussion of whether compositional
reasoning is well understood by someone, perhaps not by
the workshop participants, but by researchers in other
areas of computer science, for example, formal
verification, software architecture, process algebras, etc.
While it was not be possible even in principle to confirm
this possibility, the participants did agree that there was a
diversity of opinion in the workshop as to the nature of
compositionality.

4.4 Publication of Results

The proceedings of the workshop are available on the web
[2]. The proceedings and results of the workshop are also
being used as a basis for a special issue of Journal of
Systems and Software that is already announced [6].

5 References

[1] I. Crnkovic, H. Schmidt, J. Stafford, K. Wallnau, 4th
ICSE Workshop on Component-Based Software
Engineering: Component Certification and System
Prediction, Software Engineering Notes, 2001. Nov

[2] http://www.sei.cmu.edu/pacc/CBSE4-Proceedings.html

[3] http://www.csse.monash.edu.au/dsse/CBSE4

[4] I. Crnkovic, H. Schmidt, J. Stfford, K. Wallnau, White
Paper: Anatomy of a Research Project in Predictable
Assembly, http://www.sei.cmu.edu/pacc/CBSE5

[5] http://www.sei.cmu.edu/pacc/CBSE5/CBSE5-
Proceedings.html

[6] http://www.sei.cmu.edu/pacc/CBSE5/JSSCall.html

