
Component Service Providers: An Evolution in Component Management
Russ Bunting, Objectools.com Ltd., Toronto, Canada

russ.bunting@objectools.com

Keywords:
component service provider, component management, web services

Research Problem

In consideration of the questions of how
components are assembled, how components are
managed, how system level properties are
ensured (e.g. safety, responsiveness,
availability), and how systems comprising
hundreds of components are managed, the notion
of a Component Service Provider (CSP)
supplying component management and
provisioning is desirable given the challenges
and complexities of the tasks at hand.

During the last decade of so, the migration of
application functionality from centralized server
to numerous and heterogeneous nodes across a
network has resulted in an evolution in the way
applications are perceived, designed
implemented and updated [1]. This more
modular approach, in which an application is
considered to be an interacting set of services in
which each service is as self-contained as
possible and accessed through a well-defined
interface relies upon a number of elements to be
in place [1]:

• Design approaches, methods and tools that
support service based software architecture

• A shared infrastructure that facilitates
separation of service interfaces, allows
potential service providers to be identified,
and brokers interconnections among service
providers

• A marketplace of services from third party
suppliers in the form of components that can
readily be connected through the shared
infrastructure

As well, supporting technology must be available
to allow application developers to browse
collections of components, select those of
interest, and assemble those components to
create the desired functionality [1].

Analogous to these increasingly common
conceptions of component-based development

and component-based systems is the notion of
Web Services. A Web Service knows its
attributes, how to perform its discrete task and
how to work with other Web Services seamlessly
thus shielding the user from the low-level details
involved in locating the data and using the
applications. Furthermore, Web Services are
self-contained, self-describing and location
independent [2]. Some typical examples of Web
Services include Enterprise Resource Planning
system vendors providing discrete functions over
the internet by “XML-izing” their applications.

In order to offer Web Services, a Web Services
Automation System must build on the Web
Service basics of being highly dynamic, capable
of cross boundary communications, location
independence, and being manageable with
granular security [2]. Similar service challenges
have been addressed in distributed application
architectures of particular products like
Microsoft’s Windows Distributed interNet
Applications (DNA) architecture and also in the
creation of standards such as the Object
Management Group’s Common Object Request
Broker Architecture (CORBA) and Interface
Definition Language (IDL). For example,
Windows DNA provides a comprehensive and
integrated set of component services including
just-in-time activation, object pooling, load
balancing, in-memory database, queued
components, automatic transactions, role based
security, and events [3]. CORBA’s services
include naming, events, life cycle, object trader,
transactions and concurrency, object security,
persistence and externalization, query and
collections, object relationships and time, and
licensing [4]. It is anticipated these service
descriptions will aid in identifying the necessary
service offering of the Component Service
Provider.

Relationship to Application Service Providers

Along with identifying what a Component
Service Provisioning model might offer it is also
interesting to investigate how a CSP might
actually be implemented. In both tasks, a study
of existing Application Service Providers (ASP)

and their similarities and differences to the
Component Service Providers is warranted.

The term ASP is a generic term to describe a
company that hosts entire applications on
centralized servers. Customers pay a hosting fee
or monthly rental fee to access these applications
either via the internet or a private network. A
complete application service consists of
application hosting, application delivery and
application technical support [5]. One may
conjecture that a Component Service Provider is
nothing but a fine-grained Application Service
Provider and therefore of marginal interest. We
propose, however, that a CSP, while sharing a
number of attributes with an ASP, has additional
attributes with regards to both development and
deployment. While an application service
provider supplies an entire application over the
internet, a Component Service Provider offers a
service, through a defined interface, to
applications running on a network [6].
Furthermore, key differences include the
heterogeneous nature of a CSP with regards to
the elements, i.e. components versus
applications. As resulting applications may each
use a different subset of components from
perhaps a number of different CSPs there are
required tasks in the assembly and management
of the components, as well as how system level
properties are ensured. Also for consideration is
how existing component development tools and
technologies will be integrated with the CSP, a
challenge not evident for a typical ASP.

One item that is definitely similar in both ASPs
and CSPs is that fundamentally the ASP
challenge is to develop an efficient, i.e. where
application performance does not depend on
network bandwidth, internet-based architecture,
which will efficiently provide access to software
applications over the internet [7], or components
in the case of a CSP. In this regard, advances in
architectures for Application Service Providers
will be examined in detail.

Next Steps

This project is in is inception phase in that we
are formalizing the goal of the research project
and identifying possible deliverables.
Objectools.com Limited has built an open
component marketplace and has commissioned
this research project to understand the
applicability, technical challenges, adoption

criteria and other issues prior to undertaking
development of a Component Service
Provisioning pilot project. It is expected that this
research project will examine the Component
Service Provider approach in the context of
modern component-based development. As a
result, challenges and risks are to be identified as
well as a critical path to the realization of a
Component Service Provider model.

The research will be driven forward by
addressing the following questions:

• Is there a minimal set of the commonly
described distributed application services
(i.e. those identified in the Windows DNA
architecture and CORBA specification)
necessary to realize Component Service
Provisioning?

• Are there other distributed application
services (i.e. not identified in either existing
products or existing standards) required to
realize Component Service Provisioning?

• Are certain component types better suited to
a CSP approach than others?

• Are certain application types better suited to
a CSP approach than others?

• Are certain approaches to CBD better suited
to a CSP approach than others?

• In regards to the relationship between
component-based systems and the evolving
offerings of Web Services, what role does
XML (eXtensible Markup Language) play in
component service provisioning?

References

[1] A. Brown, “CASE in the 21st Century:
Challenges Facing Existing CASE Vendors”,
IEEE Computer, 1997
[2] F. Moss, “Web Services: Computing’s Fourth
Wave”, http://www.bowstreet.com
[3] G. Eddon, “COM+: The Evolution of
Component Services”, IEEE Computer, July
1999
[4] C. Syperski, “Component Software: Beyond
Object Oriented Programming”, Addison-
Wesley, 1998
[5] http://www.aspisland.com/services/model.asp
[6] http://tbtf.com/jargon-scout.html#csp
[7] Furht et al., “An Innovative Internet
Architecture for Application Service Providers”,
Proceedings of the 33rd Hawaii International
Conference on System Sciences, 2000

