
WaterBeans: A Custom Component Model and Framework

Kurt C. Wallnau, Daniel Plakosh

Software Engineering Institute
Carnegie Mellon University

 Pittsburgh, PA, 15213, U.S.A.
+1 412 268 3265

{kcw,dplakosh}@sei.cmu.edu

Introduction

The development of component-based systems is sup-
ported by commercial component technologies such as
Sun’s Enterprise JavaBeans™ and Microsoft’s COM+.
But these technologies only address the needs of a par-
ticular class of systems, one that we might refer to as dis-
tribute, transactional enterprise systems. Notwithstanding
the significant market size for this class of system, there are
many other classes of system that could benefit from a
component-based approach but for which EJB and COM+
provide little support. For example, systems requiring near
real-time performance or high availability have require-
ments that are not addressed by either EJB or COM+. For
these classes of system a custom component technology is
needed.

We encountered one such situation in work we per-
formed for the US Environmental Protection Agency
(EPA). The EPA Department of Water relies upon the use
of mathematical models of pollutant “fate and transport,”
the chemical and hydrological processes that underlie the
quality of water. A substantial amount of software has
been written to use such models in simulating water qual-
ity. These simulations, in turn, are used for regulatory pur-
poses, as well as for improving the science that produced
these models in the first place. Unfortunately, the models
and the software that uses these models have grown suffi-
ciently complex that they now act as an inhibitor to the
advancement of water quality science. What EPA needs is
a software architecture that facilitates the substitution of
new mathematical models for old, and new simulation
techniques for old. In short, they need a component-based
approach to water quality modeling.

Water quality simulations introduce a number of de-
manding requirements not addressed by commercial com-
ponent technologies. First and foremost is the performance
requirement. Simulations may draw upon numerous
sources of data, some of which generate a large volume of
data. Analysts need to visualize the results of a simulation
as it progresses, because the volume of data produced
makes data logging for later replay impractical. A second

requirement has more to do with the intended audience for
a component-based technology for water quality modeling
and simulation. The intended users range from the chem-
ists and physicists who create water quality models, to civil
engineers who select and combine the models needed to,
for example, design urban sewage systems, to policy mak-
ers who wish to understand the implications of regulations
pertaining to allowable concentrations of pollutants in riv-
ers. The technology needs to support all of these kinds of
users, none of which may be properly thought of as “so-
phisticated” with respect to software technology and soft-
ware engineering practice.

We first describe a reference model for software com-
ponent technology, so that it is clear what we mean when
we say that a custom component technology is needed. We
then describe WaterBeans, a prototype component tech-
nology in terms of this reference model. We briefly de-
scribe three different applications that we developed using
WaterBeans in order to demonstrate its applicability to a
class of systems represented by EPA’s software. Finally,
we describe our interest in using WaterBeans to explore
the question of component certification and prediction of
application properties from certified component properties.

Software Component Technology

As part of an ongoing study of component-based soft-
ware, we have conducted an extensive literature survey,
studied numerous software component technologies, and
examined many systems that were purported to be “com-
ponent-based.” From these investigations we have detected
a pattern of concepts that recurs in component-based sys-
tems and technologies, as depicted in Figure 1, below.

Briefly, a component (�) is a software implementation
that can be executed on a physical or logical device. A
component implements one or more interfaces that are
imposed upon it (�). Doing so means that the component
satisfies certain contractual obligations (�). These con-
tractual obligations ensure that independently developed
components obey certain rules so that components interact
(or can not interact) in predictable ways, and can be de-

ployed into standard build-time and run-time environments
(�). A component-based system is based upon a small
number of distinct component types, each of which plays a
specialized role in a system (�) and is described by an
interface (�). A component model (�) is the set of com-
ponent types, their interfaces, and, additionally, a specifi-
cation of the allowable patterns of interaction among com-
ponent types. A component framework (�) provides a
variety of runtime services (�) to support and enforce the
component model. In many respects component frame-
works are like special-purpose operating systems, although
they operate at much higher levels of abstraction.

� Component
type-specific
interface � Component

implementation

� Implements
interface and satisfies
contract

�
Independent
deployment

� Component
Model

�
Component
types and
contracts

� Component Framework

� Coordination services
(transactions, persistence, …)

Figure 1: Reference Model for Software Component Technology

When we say that a custom component model may be
needed, we mean that a component framework must be
constructed to support some application-specific compo-
nent model. Of course, what is custom-built today may be
used off-the-shelf tomorrow. But the question of how to
develop industry-standard component models and frame-
works is one best left to another position paper.

WaterBeans

The WaterBeans1 component models defines only one
type of component. WaterBeans components have typed
input and output ports that consume and produce streams
of bytes. WaterBeans components are like JavaBeans in
that the component type is really a meta-type; components
must conform to an interface pattern defined by the meta-

1 We must note that the choice of the name “WaterBeans” is un-
fortunate in that WaterBeans are not (necessarily) written in
Java.

type. Thus, a WaterBean component may have as many or
as few input or output ports as needed. The type of the
port is defined by the name given to that port by the com-
ponent developer.

Components can be implemented in any programming
language. The only requirement is that they implement the
required interface and export this interface in the form of a
Microsoft DLL. Thus, WaterBeans adopts a binary stan-
dard for components. The required interface consists of
several operations that allow the framework to interrogate
the component about its input and output ports (a “poor
man’s” introspection capability), what icon should be used
in the visual composition environment, and similar book-
keeping operations. The interface also consists of opera-
tions that are used by the framework to manage the runtime
execution and interaction of components. The complete
API is documented in [Plakosh 99].

Applications are constructed from WaterBean compo-
nents by linking the output port of one component to one or
more input ports of other components. The WaterBeans
framework provides a composition environment that per-
forms primitive type-by-name matching to ensure that input
and output ports “match.” This approach is, depending on
how you look at it, either too liberal or too restrictive. In
either case it must be admitted that this typing scheme re-
quires that component developers have some a priori
agreement about the types of data that are used in assem-
bling applications and what these data types are called.
Applications therefore resemble a pipe-and-filter style of
system, where the filters can supply different data streams
to different pipes, and receive data from different pipes.
An annotated snapshot of the composition environment is
provided in Figure 2.

The WaterBeans framework also provides the runtime
environment for applications. The most interesting aspect
of the environment is the execution scheduler. The sched-
uler calculates, for a given topology of components, an
execution ordering for components, based upon component
precedence. Thus, if component B depends upon input
from component A, then component A will execute before
component B. Where there are several possible “sched-
ules” the framework will select one non-deterministically2.
The scheduling policy is non-preemptive. Thus the be-
havior of an application depends upon the components to
return control to the framework in a timely way. Also,
there is only a single thread of execution in a WaterBeans
application that is shared by the components and the
framework.

2 There are ways to force a particular ordering using “triggers.”
Refer to [Plakosh 99] for details.

WaterBeans Application Domains

The component model and framework just described
has potential utility beyond EPA water quality modeling.
To demonstrate this potential we applied WaterBeans to
three distinct application domains. In practical terms, ap-
plying WaterBeans to an application domain means devel-
oping a family of components that share some functional
scope and that agree upon the data types necessary for their
integration.

Waveform Visualization and Manipulation

The first application domain comprises components
that can generate, add, subtract, and display waveforms.
Although this is a trivial application domain (which is not
to say that the coding of all components were trivial),
something simple was needed to demonstrate WaterBeans
concepts to new users. The waveform components are
distributed with the publicly-available WaterBeans down-
load.

Audio Visualization and Manipulation

The second application domain comprises components
that can sample audio signals from a CD, inject signals into
an audio stream, combine audio streams, feed these streams
to the audio player and visualize the streams that are
played. Although this is also a trivial application domain it
is one that has fairly severe performance requirements and
thus afforded us with a simple means to demonstrate and
experiment with the performance of the WaterBeans
framework.

Water Quality Modeling Simulation

The third and last application domain comprises com-
ponents that produce simulation data, allow modeling of
urban sewage systems, strip charts for displaying water
volumes and pollutant concentrations, and computational
engines for solving systems of equations. The components
used in this application were a mix of custom-built compo-
nents and wrapped “legacy” FORTRAN components. This
is a non-trivial application domain and it demonstrates that
WaterBeans is scaleable to build applications at least as
complex as those currently being used by EPA for water
quality modeling.

Limitations and Next Steps: Predictable
Assembly from Certified Components

There are, naturally enough, many limitations to the
WaterBeans implementation. There is no means for hier-
archical composition, and thus entire applications must be
constructed on one palette. The scheduling policy is
fixed; it, too, should be a component, albeit one that modi-

fies framework behavior rather than application behavior.
The component model should allow separate threads of
control in components and framework. Some support for
distributed composition and execution would be nice, too.
All of these would be useful implementation extensions,
and perhaps we will find some time to implement them (or,
better still, convince someone else to implement them).

More interesting to us, however, is the question of how
WaterBeans can be enhanced so that we can predict the
properties of assembled applications (in particular, per-

øComponent
Properties

÷ Component Inspector ú Components used in
application being composed

ì Data and
control
connectors
between
components

öApplication
Canvas

í Composer
Tool Functions

�Component
implementation of
a selected type

ó Grouping of
components by type

Figure 2: WaterBeans Composition Environment

p1

p2
c1

p3

c2

S

p4

formance properties) from the component model, and from
the known properties of components and framework.
There has been increasing interest in working towards the
goal of building applications from trusted software compo-
nents, perhaps even certified software components. But
approaches such as those described by the Trusted Com-
ponents Initiative3 tend to take a component-centric view
of certification, and, we believe, thereby miss an opportu-
nity provided by software component technology to pro-
vide a useful foundation for component certification. We
devote the remainder of this position paper to that idea.

Certification and Compositional Reasoning

The unspoken premise behind component4 certification
is that there is a causal link between those properties of a
component that are certified and the properties of an end
system that use that component. The more confidence we
have in this link the more value will accrue from compo-
nent certification. At the extreme we may achieve 100%
confidence (or trust) in the causal link. At this extreme,
once a property has been established for a component it is
unnecessary to certify that the end system has obtained this
same property, since we know this to be true by definition.

It is unlikely that 100% confidence will be achieved for
all (if any) of the different kinds of properties of interest.
In the absence of 100% confidence we move from the
realm of certainty to the realm
of probability and prediction.
In this realm the value of
component certification is
proportional the strength of
the predictions that can be
made about end-system prop-
erties. Consider the graphic
at right. System S comprises
two components, C1 and C2.
C1 possesses property p1 and
p2, while C2 has property p3. Our interest is in ensuring
that system S exhibits property p4. In the illustration we
assert that p1 and p3 are causally linked to p4.

For the above diagram, assume that property p4 is end-
to-end latency. If property p1 and p3 refer to the quality of
documentation of components C1 and C2, then the link
between p1, p3 and p4 is non-existent and certification of
documentation quality would be of no value. Alternatively,
if property p1 and p3 refer to some performance attributes
of C1 and C2 that contribute to end-to-end latency, then the

3 See http://www.trusted-components.org/.

4 The following discussion applies equally to components and
frameworks. We refer only to components to avoid exces-
sively awkward phraseology.

value of certifying these performance properties increases
somewhat. How much this value increases depends upon
the strength of the theory we will use to predict p4 from the
values of p1 and p3. If we have a theory that can predict
the latency p4 from latency p1 and p3 with only a small
margin of error, then our knowledge of p1 and p3 is useful.
Conversely, if our theory is weak then our knowledge of p1
and p3 is much less useful.

Such theories of prediction support what we refer to as
compositional reasoning. The adjective compositional
reflects the belief (as software architects have long as-
serted) that end-system properties are most often attribut-
able to a collection of interacting components rather than
to a single component. Thus, the properties of these sev-
eral parts must be combined (“composed”) to predict the
properties of the whole. There are well-established pre-
diction theories, for example Rate Monotonic Analysis
(RMA) that support compositional reasoning about per-
formance attributes of systems.

Note that the value of these theories goes beyond pre-
dicting system properties. Such theories also tell us which
properties can be predicted (p4), and, just as important,
which component properties we need to know about in
order to make these predictions (p1 and p3). The value of
a certification regime for component-based systems is di-
rectly linked to the strength of our compositional reason-
ing. Without compositional reasoning we can not know
which properties of components and frameworks to certify.
With weak compositional reasoning the value of certifica-
tion will be questionable and therefore the economic in-
centives for 3rd-party certification will never be sufficient
to spur industry investment.

Compositional Reasoning and Software Architecture

The connection between compositional reasoning and
software architecture was just alluded to--the motivation
underlying the study of software architecture is prediction
of system properties from the types of components in a
system and their patterns of interaction. One promising
research avenue, attribute-based architecture styles
(ABAS), seeks to make compositional reasoning based on
architectural decisions more formal, or at least more struc-
tured [Klein 99]. In brief, using ABAS terminology, an
ABAS is an architectural style and an associated attribute
reasoning framework. An ABAS has four major parts:

• A description of the analysis problem solved by the
ABAS.

• A characterization of the stimuli to which the ABAS
responds and the quality attribute measures of the re-
sponse.

• A description of the architectural style in terms of its
components, connectors, topologies, and their proper-
ties. This will be used to structure the analysis.

• A reasoning framework that links stimuli and archi-
tectural properties to response. The rigor of these
frameworks range from heuristics to mathematical
formulae.

The fourth bullet contains the theory and compositional
reasoning that relates properties of components and
frameworks (the second and third bullets) to end system
properties (the response in the second bullet).

There is a useful connection between ABAS and soft-
ware component technology in that a component model
expresses architectural decisions that are imposed on com-
ponent (and framework) developers. If these component
models are equipped with an ABAS-style reasoning
framework, then two things become possible. First, appli-
cation builders can use the reasoning framework(s) bun-
dled with the component model to predict end system
properties (one facet of the SEI vision for CBSE). Second,
the reasoning framework(s) will identify those properties
that must be known about components and frameworks,
and hence certified.

We have done some preliminary “thought experiments”
on how this connection can be put to the test with Water-
Beans. For example, we used the concurrent pipeline
ABAS (see [Klein 99 for details]) to analyze performance
attributes of a sample WaterBeans application in the audio
visualization and manipulation domain. This experiment
produced several interesting and encouraging results.
First, the reasoning framework guided us on how to con-
ceptualize the component topology (for example, by com-
bining some components) in a way that made performance
analysis simpler. Second, the reasoning framework clearly
identified those properties that were required of compo-
nents and framework in order to do performance predic-
tion. Third, the ABAS exposed some of our WaterBeans
design decisions to criticism, in particular those decisions
that rendered the use of the reasoning framework less ef-
fective.

This last point in particular is worth emphasizing, be-
cause it suggests that a component model and framework
be designed with ABAS’s from the outset. What we are
suggesting is something analogous to what motivated
structured programming. If analyzing computer programs
with arbitrary GOTO structures is problematic, the solution
is not to improve the analysis tools (this might be useful),
but rather to structure programs so that they are analyzable
(this will be useful). Similarly, component frameworks can
enforce a variety of architectural constraints that are ex-
pressed in a component model. Properly designed (i.e.,
structured), a component model can make systems more
easily analyzable with respect to one or more properties of

interest. We believe that the ABAS idea is one promising
avenue for helping us to construct component models that
facilitate analysis of system properties, and, almost inci-
dentally, define those attributes of components and frame-
works that are worth certifying.

Summary

WaterBeans is a custom software component technol-
ogy that was designed for applications where near real-time
performance is needed in pipe-and-filter like applications
executing in a uni-processor environment. WaterBeans
was demonstrated in three different application domains,
ranging from trivial to industrial-strength. There are any
number of extensions that can be envisioned that would
extend the scope of WaterBeans to distributed applications,
heterogeneous systems, and so forth.

Rather than investigate these mechanical extensions we
are instead using WaterBeans to investigate how software
component technology can provide a foundation for com-
ponent certification and prediction of application proper-
ties from component properties. We are currently investi-
gating how techniques such as ABAS can be used to gov-
ern the design of component models, and to identify those
properties of components and frameworks that are needed
to support the prediction of end-system properties.

References

[Plakosh 99] Daniel Plakosh, Dennis Smith, Kurt Wallnau,
Builder’s Guide for WaterBeans Components, Technical
Report CMU/SEI-99-TR-024, Software Engineering Insti-
tute, Carnegie Mellon University, Pittsburgh, PA.
http://www.sei.cmu.edu/publications/documents/99.reports
/99tr024/99tr024title.html

[Klein 99] Mark Klein, Rick Kazman, Attribute-Based
Architectural Styles, Technical Report CMU/SEI-99-TR-
022, Software Engineering Institute, Carnegie Mellon Uni-
versity, Pittsburgh, PA.
http://www.sei.cmu.edu/publications/documents/99.reports

