Component-Based Software Engineering:
The KobrA Approach

Colin Atkinson, Joachim Bayer, Oliver Laitenberger and Jorg Zettel.

Fraunhofer IESE
Sauerwiesen 6
D-67661 Kaiserslautern, Germany
+49 6301 707 221
{atkinson, bayer, laiten, zettel} @iese.thg.de

ABSTRACT

The software industry is pinning its hopes for future
software productivity and quality gains on component-
based development. However, to date the component
paradigm has only really penetrated the "implementation"
phase of the software life-cycle, and does not yet play a
major role in the earlier analysis and design activities of
large software projects. This is evidenced by the fact that in
today's technology being a component means being
implemented as a JavaBeans, a COM object or a COBRA
object [1]. This paper briefly describes a new method for
component-based software engineering, known as KobrA,
which makes the component concept an integral part of the
complete software life cycle. Distinctive features of the
method include integrated support for product lines,
comprehensive UML-based component modeling, and a
systematic process based on a strict separation of concerns.

1 INTRODUCTION

Component-based software engineering (CBSE) is
expected to revolutionize the development and maintenance
of software systems. The Gartner Group, for example,
estimates that "... by 2003, 70% of new applications will
be deployed as a combination of pre-assembled and newly
created components integrated to form complex business-
systems." The resulting increase in reuse should
dramatically improve time-to-market, software lifecycle
costs and quality. However, the practical attainment of
these benefits is contingent upon the availability of
appropriate development methodologies and frameworks.

Unfortunately the current generation of methods do not go
far enough in their support for components. Although they
accommodate CBSE, their support for the paradigm is
typically focused on the implementation and deployment
phases, and tends to view components as the result of
software development rather than an integral part of it.
Contemporary component-based Frameworks have a
similar problem. They also view components as atomic,
"black box" (binary) units of software whose application
and assembly is handled in a different way to their creation.

The KobrA approach, developed in the BMBF-supported
KobrA project by Softlab GmbH, Psipenta GmbH, GMD-
FIRST and Fraunhofer IESE, addresses this problem by

making components the focus of the entire software
development process, not just the implementation and
deployment phases, and by adopting a product-line strategy
for their creation, maintenance and deployment. The
resulting method augments the typical "binary-module"
view of components with a full, UML-based representation
that captures their entire set of characteristics and
relationships. This not only makes the analysis and design
activities component-oriented, but allows the essential
structure and behavior of component-based systems to be
described in a way that is independent of (but compatible
with) specific component implementation technologies
such as COM, CORBA or Java Beans.

2 PRODUCT-LINE DEVELOPMENT

At the highest level of granularity, the organization of a
KobrA project is based on a product-line. This means that
all software assets related to a family of products are
consolidated within a generic, reusable framework, instead
of being organized and reused in an ad hoc manner. This
framework is then instantiated in a controlled way to
provide specific product-variants as and when needed. The
product line approach has attracted growing interest in
recent years, but has been hindered by the lack of flexible
implementation technologies. By enabling software
elements, right down to the binary level, to be rapidly and
efficiently assembled into new applications, component
technologies provide precisely the kind of mechanisms
needed to fully exploit the product-line approach. The
product-line aspects of KobrA are based on the PuLSE
approach [2].

The central artifact in a KobrA project is the framework. A
framework provides a generic description of the software
elements making up a family of applications, but in contrast
with most other approaches, a KobrA framework embodies
all concrete variants of a family, not just the common parts.
This is achieved by capturing all possible features within
the framework and using decision models to describe the
choices that distinguish distinct members of the family.

Once a framework has been completed, specific
applications can be instantiated from it by the resolution of
the decision models. Based on the specific resolution of
decisions in the decision model, corresponding features are

selected from the generic set. The result is an application
with the same form and structure as the framework, but
with all genericity and unrequired features removed. The
application can then be transformed into an equivalent
implementation that contains the source code for automated
compilation tools.

A central tenet of software engineering is the separation of
concerns. KobrA applies this principle in the full by
providing a clean separation of development dimensions.
The instantiation of a framework represents a
transformation along the dimension of genericity (or
specificity), while the implementation and building of an
application represent a transformation along the dimension
of abstraction. The remaining development dimension,
composition, is elaborated within the framework
engineering activity [3].

3 FRAMEWORK ENGINEERING

Most existing component-based methods view a software
entity as a component if it is implemented using a specific
construct (e.g. a Java Bean) or modeled using a particular
abstraction (e.g. a component icon). In other words,
"componenthood" is regarded as an absolute property.
Fundamentally, however, componenthood is relative rather
than absolute. The term "component" indicates that one
artifact (the component) is a part of another artifact, not
that it is described in some particular way.

KobrA's framework engineering activity recognizes this
characteristic of components by focussing on the
composition dimension. A KobrA framework is thus
viewed as a tree-structured hierarchy of components, in
which the parent/child relationship represents composition
(a parent is composed-of its children). Separating
composition from abstraction in this way allows the
composition hierarchy to be described at an abstract level
akin to analysis and design in ordinary development
methods. In KobrA, each Komponent (KobrA component)
in the framework is described by a suite of UML diagrams
as if it were an independent system in its own right.

Decision Model
(textual)

Specification Models

Behaviour Model
<~ (UML statechart diagram)

Functional Model
(operation schemata)

Structural Model

o /Komponent /| #—
P (UML dlass/object diagrams)

” Structural Model
(UML class/object diagrams)

interacton Model —
collaboration diagram:
(g m
=
" Execution Model

(UM actiity diagrams)
,/

Realization Models

Decision Model
(textual)

Figure 1 UML-based Component Modeling

As illustrated in Figure 1, the description of a Komponent is
split into two main parts: the specification, which describes
the externally visible characteristics of the Komponent and
thus defines the "requirements" which it is expected to
meet, and the realization which describes how the
Komponent satisfies these requirements in terms of
interactions with lower-level sub-Komponents. Among
other things, therefore, the realization captures the
architecture (or design) of the Komponent. The overall
framework consists of a set of Komponent specifications
and realizations inter-related by carefully controlled
consistency, traceability and realization relationships.

This representation of Komponents gives rise to another
important characteristic of the KobrA approach - recursive
development. Every Komponent, regardless of its
granularity or location in the tree, is manipulated using the
same basic set of concepts. Among other things, this means
that a complete system is a Komponent, and any
Komponent can be a system (provided it has the
appropriate properties). It also means that the framework
development process can be entirely recursive - the same
basic activities are repeated on Komponents until the
overall tree structure has been elaborated. The result is a
method which is highly architecture centric, and
architectures which are highly component centric.

KobrA supports component reuse by allowing regular
Komponent realizations to be replaced by COTS or
preexisting components. At any point in the framework
elaboration process if the need for a new kind of
component is recognized, component reuse is possible.
Once the initial component specification has been
established, the client ~ Komponent (i.e. the
supercomponent) and the candidate for reuse must
negotiate to reach a mutually acceptable contract. This
bottom-up style of development provides a natural
complement to the top-down style represented by the fresh
realization of Komponents.

4 QUALITY ENGINEERING

Although quality is important in all software projects, it
assumes particular importance in methods that have a tree-
based product like KobrA. This is because errors and
quality problems near the top of the tree can have a
disproportionate effect on the quality of the overall product
and the success of a project. KobrA therefore places a
premium on quality.

KobrA's quality engineering techniques are based on the
solid foundation of a well-defined product. The "product"
includes not only the models and documents, but also the
relationships between these models and documents. KobrA
has a particularly rich set of inter-model consistency rules,
and the relationships that capture these rules are treated as
first class entities within the configuration management and
quality engineering activities. High quality models, and
inter-model relationships are achieved by systematic

inspection activities adapted from the perspective-based
reading approach [4]. In addition, testing concerns are
addressed at the early stages of framework engineering,
with the generation of test cases being recommended as
soon as the required information is available. The
inspection and testing activities are augmented by powerful
quality modeling approaches that enable the quality of
specifications and realizations to be evaluated from the
UML graphical models [5].

Finally, not only are the products of a KobrA project well
defined, but also the process. Like the Komponents in a
framework, the activities in the process are organized
hierarchically, and each is comprehensively described
using UML activity diagrams.

5 CONCLUSION

The KobrA approach described in the previous sections has
been influenced by, and has similarities with, numerous
other leading software development methods, particularly
the Cleanroom[6], Fusion[7] and Catalysis[8] methods. It is
also compatible with the Unified Process[9] and OPEN[10]
process frameworks. The method is therefore well equipped
to support practical software engineering projects, and is
supported by a specially developed workbench based on the
Enabler repository family from Softlab. This workbench
allows organization's wishing to use the KobrA method to
assemble their own preferred suite of tools to support
KobrA development. By means of an architecture built on
the XML-based UML interchange format, XMI [11], the
workbench is able to support KobrA development with all
leading (XMI-compliant) case tools.

A key predefined Komponent of the KobrA workbench is
the KobrA Komponent Manager. This provides general
workbench-management capabilities to the developer, and
supports optimal navigation through, and population of,
KobrA frameworks. Since it has itself been developed
using KobrA, the workbench provides evidence of the
efficacy of the method. Other case studies are currently
underway in the domain of Enterprise Resource Planning
(ERP) and library management.

ACKNOWLEDGEMENTS

The authors are grateful to their colleagues on the KobrA
method development team for their contribution to the
ideas in this article: Christian Bunse, Erik Kamsties, Dirk
Miithig, Barbara Paech and Jiirgen Wiist. The authors
would also like to thank the other members of the KobrA
project: Torsten Sanders, Gernot Krause, Bernd Knauf,
Marion Dikel and Jens Rienhold of Psipenta, Martin Dehn,
Uwe Zeithammer and Guenther Merbeth of Softlab, Ronald
Melster, Boris Groth, Marko Fabiunke and Matthias
Anlauff of GMD-FIRST and Giinther Ruhe and Peter
Rosch of IESE. Finally, the authors are grateful to the
BMBF for supporting this work.

REFERENCES

1.

10.

11.

C. Szyperski, Component Software - Beyond Object-
Oriented Programming, Addison-Wesley /ACM Press,
1998.

Bayer, J., Flege, O., Knauber, P., Laqua, R., Muthig, D.,
Schmid, K., Widen, T. and DeBaud, J.-M. PuLSE: A
methodology to develop software product lines. In
Proceedings of the Symposium on Software Reusability
(SSR’99), May 1999.

Atkinson, C., Kiihne, T. and Bunse, C. Dimensions of
Component-based Development, Fourth International
Workshop on Component-Oriented Programming
(WCOP'99), 1999.

Laitenberger O. and Atkinson, C., Generalizing
Perspective-based Inspection to handle Object-Oriented
Development Artifacts, in Proceedings of the 21nd
International Conference of Software Engineering,
1999.

Briand, L., Wuest, J., Lounis, A., Ikonomovski,
Investigating Quality Factors in Object-Oriented
Designs: An Industrial Case Study, Proceedings of
ICSE 1999, 345-354.

Deck, M., Cleanroom and object-oriented software
engineering: A unique synergy. In Proceedings of the
Eighth Annual Software Technology Conference, Salt
Lake City, USA, April 1996.

Coleman, D., Arnold, P., Bodoff, S., Dollin, C.,
Gilchrist, H. Hayes, F., and Jeremaes, P., Object-
Oriented Development: The Fusion Method. Prentice
Hall, 1993.

D. D'Souza and A. C. Wills, Catalysis: Objects,
Frameworks, and Components in UML, Addison-
Wesley, 1998.

Kruchten, P., The Rational Unified Process: An
Introduction, Addison-Wesley, 1999.

Graham, 1., Henderson-Sellers, B., Younessi, H., The
OPEN Process Specification, Addison-Wesley, 1997.

XML Metadata Interchange (XMI), version 1.1, OMG
Document ad/99-10-02, October 1999.

